Skip to main content
Log in

Atmospheric CO2 capture and photofixation to near-unity CO by Ti3+-Vo-Ti3+ sites confined in TiO2 ultrathin layers

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

To realize efficient atmospheric CO2 chemisorption and activation, abundant Ti3+ sites and oxygen vacancies in TiO2 ultrathin layers were designed. Positron annihilation lifetime spectroscopy and theoretical calculations first unveil each oxygen vacancy is associated with the formation of two Ti3+ sites, giving a Ti3+-Vo-Ti3+ configuration. The Ti3+-Vo-Ti3+ sites could bond with CO2 molecules to form a stable configuration, which converted the endoergic chemisorption step to an exoergic process, verified by in-situ Fourier-transform infrared spectra and theoretical calculations. Also, the adjacent Ti3+ sites not only favor CO2 activation into COOH* via forming a stable Ti3+-C-O-Ti3+ configuration, but also facilitate the rate-limiting COOH* scission to CO* by reducing the energy barrier from 0.75 to 0.45 eV. Thus, the Ti3+-Vo-TiO2 ultrathinlayers could directly capture and photofix atmospheric CO2 into near-unity CO, with the corresponding CO2-to-CO conversion ratio of ca. 20.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Tong D, Zhang Q, Zheng Y, Caldeira K, Shearer C, Hong C, Qin Y, Davis SJ. Nature, 2019, 572: 373–377

    Article  CAS  Google Scholar 

  2. Bard AJ, Fox MA. Acc Chem Res, 1995, 28: 141–145

    Article  CAS  Google Scholar 

  3. Lv H, Sa R, Li P, Yuan D, Wang X, Wang R. Sci China Chem, 2020, 63: 1289–1294

    Article  CAS  Google Scholar 

  4. He Q, Wu B, Hu Y, Huang W, Li Y. Sci China Chem, 2020, 63: 1716–1720

    Article  Google Scholar 

  5. House KZ, Baclig AC, Ranjan M, van Nierop EA, Wilcox J, Herzog HJ. Proc Natl Acad Sci USA, 2011, 108: 20428–20433

    Article  CAS  Google Scholar 

  6. Gao P, Li S, Bu X, Dang S, Liu Z, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y. Nat Chem, 2017, 9: 1019–1024

    Article  CAS  Google Scholar 

  7. Han B, Ou X, Deng Z, Song Y, Tian C, Deng H, Xu YJ, Lin Z. Angew Chem Int Ed, 2018, 57: 16811–16815

    Article  CAS  Google Scholar 

  8. Wu X, Li Y, Zhang G, Chen H, Li J, Wang K, Pan Y, Zhao Y, Sun Y, Xie Y. J Am Chem Soc, 2019, 141: 5267–5274

    Article  CAS  Google Scholar 

  9. Matavos-Aramyan S, Soukhakian S, Jazebizadeh MH, Moussavi M, Hojjati MR. Appl Mater Today, 2020, 18: 100499

    Article  Google Scholar 

  10. Cao N, Chen Z, Zang K, Xu J, Zhong J, Luo J, Xu X, Zheng G. Nat Commun, 2019, 10: 2877

    Article  Google Scholar 

  11. Huygh S, Bogaerts A, Neyts EC. J Phys Chem C, 2016, 120: 21659–21669

    Article  CAS  Google Scholar 

  12. Dong H, Zhang L, Li L, Deng W, Hu C, Zhao ZJ, Gong J. Small, 2019, 15: 1900289

    Article  Google Scholar 

  13. Li X, Sun Y, Xu J, Shao Y, Wu J, Xu X, Pan Y, Ju H, Zhu J, Xie Y. Nat Energy, 2019, 4: 690–699

    Article  CAS  Google Scholar 

  14. Wang Y, Sun H, Tan S, Feng H, Cheng Z, Zhao J, Zhao A, Wang B, Luo Y, Yang J, Hou JG. Nat Commun, 2013, 4: 2214

    Article  Google Scholar 

  15. Kumar PM, Badrinarayanan S, Sastry M. Thin Solid Films, 2000, 358: 122–130

    Article  CAS  Google Scholar 

  16. Ji Y, Luo Y. J Am Chem Soc, 2016, 138: 15896–15902

    Article  CAS  Google Scholar 

  17. Kansy J. Nucl Instrum Meth A, 1996, 374: 235–244

    Article  CAS  Google Scholar 

  18. Liu R, Fang L, Hao Y, Chi Y. Materials, 2018, 11: 2156

    Article  Google Scholar 

  19. Kong M, Li Y, Chen X, Tian T, Fang P, Zheng F, Zhao X. J Am Chem Soc, 2011, 133: 16414–16417

    Article  CAS  Google Scholar 

  20. Jiao X, Zheng K, Liang L, Li X, Sun Y, Xie Y. Chem Soc Rev, 2020, 49: 6592–6604

    Article  CAS  Google Scholar 

  21. Nakajima T, Tamaki Y, Ueno K, Kato E, Nishikawa T, Ohkubo K, Yamazaki Y, Morimoto T, Ishitani O. J Am Chem Soc, 2016, 138: 13818–13821

    Article  CAS  Google Scholar 

  22. Liang L, Li X, Sun Y, Tan Y, Jiao X, Ju H, Qi Z, Zhu J, Xie Y. Joule, 2018, 2: 1004–1016

    Article  CAS  Google Scholar 

  23. Tumuluri U, Howe JD, Mounfield Iii WP, Li M, Chi M, Hood ZD, Walton KS, Sholl DS, Dai S, Wu Z. ACS Sustain Chem Eng, 2017, 5: 9295–9306

    Article  CAS  Google Scholar 

  24. Han Q, Bai X, Man Z, He H, Li L, Hu J, Alsaedi A, Hayat T, Yu Z, Zhang W, Wang J, Zhou Y, Zou Z. J Am Chem Soc, 2019, 141: 4209–4213

    Article  CAS  Google Scholar 

  25. Mino L, Spoto G, Ferrari AM. J Phys Chem C, 2014, 118: 25016–25026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2019YFA0210004, 2017YFA0207301, 2017YFA0303500), the National Natural Science Foundation of China (21975242, U2032212, 21890754, 21805267, 21703222, 11975225), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000), Youth Innovation Promotion Association of CAS (CX2340007003), Key Research Program of Frontier Sciences of CAS (QYZDY-SSW-SLH011), Major Program of Development Foundation of Hefei Center for Physical Science and Technology (2020HSC-CIP003), Users with Excellence Program of Hefei Science Center CAS (2020HSC-UE001), The University Synergy Innovation Program of Anhui Province (GXXT-2020-001), and the Fok Ying-Tong Education Foundation (161012). Supercomputing USTC and National Supercomputing Center in Shenzhen are acknowledged for computational support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiquan Luo, Hongjun Zhang or Yongfu Sun.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Ling, P., Li, Y. et al. Atmospheric CO2 capture and photofixation to near-unity CO by Ti3+-Vo-Ti3+ sites confined in TiO2 ultrathin layers. Sci. China Chem. 64, 953–958 (2021). https://doi.org/10.1007/s11426-021-9967-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-9967-9

Keywords

Navigation