Skip to main content
Log in

Roles of hydroxyl and oxygen vacancy of CeO2·xH2O in Pd-catalyzed ethanol electro-oxidation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In the field of noble metal-catalyzed alcohol electro-oxidation reaction (AOR), huge attention is paid on the composition, size, facet, and structure of the metals, while the support engineering should also be emphasized. CeO2 has been widely used as an unique support in AOR, primarily due to its abundant oxygen vacancies (Ov). Herein, we report CeO2·xH2O nanoparticles with both massive hydroxyl groups (OH) and Ov remarkably enhance the catalytic activity and stability of Pd toward ethanol oxidation reaction (EOR). The CO striping experiments and density functional theory (DFT) calculations suggest that OH and Ov on CeO2·xH2O surface bring about a large downshift of Pd d-band center and a significant weakening of CO absorption on Pd. Moreover, OH and Ov also play synergic roles in the removal of toxic intermediates. Consequently, the important roles of OH and Ov of CeO2·xH2O are confirmed in Pd-catalyzed EOR. The facile CeO2·xH2O-enhanced strategy can contribute to the catalyst design for other energy conversion reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lv H, Guo X, Sun L, Xu D, Liu B. Sci China Chem, 2021, 64: 245–252

    Article  CAS  Google Scholar 

  2. Lv H, Sun L, Zou L, Xu D, Yao H, Liu B. Chem Sci, 2019, 10: 1986–1993

    Article  CAS  Google Scholar 

  3. Wang K, Du H, Sriphathoorat R, Shen PK. Adv Mater, 2018, 30: 1804074

    Article  Google Scholar 

  4. Wang YF, Zhu C, Yang YY, Zhao ZG. J Energy Chem, 2018, 27: 389–394

    Article  Google Scholar 

  5. Huang W, Kang X, Xu C, Zhou J, Deng J, Li Y, Cheng S. Adv Mater, 2018, 30: 1706962

    Article  Google Scholar 

  6. Xia Z, Guo S. Chem Soc Rev, 2019, 48: 3265–3278

    Article  CAS  Google Scholar 

  7. Liu W, Herrmann AK, Geiger D, Borchardt L, Simon F, Kaskel S, Gaponik N, Eychmüller A. Angew Chem Int Ed, 2012, 51: 5743–5747

    Article  CAS  Google Scholar 

  8. Chen L, Lu L, Zhu H, Chen Y, Huang Y, Li Y, Wang L. Nat Commun, 2017, 8: 14136

    Article  CAS  Google Scholar 

  9. Lyu F, Cao M, Mahsud A, Zhang Q. J Mater Chem A, 2020, 8: 15445–15457

    Article  CAS  Google Scholar 

  10. Wang J, Xiao X, Liu Y, Pan K, Pang H, Wei S. J Mater Chem A, 2019, 7: 17675–17702

    Article  CAS  Google Scholar 

  11. Wang L, Wu W, Lei Z, Zeng T, Tan Y, Cheng N, Sun X. J Mater Chem A, 2020, 8: 592–598

    Article  Google Scholar 

  12. Xi Z, Erdosy DP, Mendoza-Garcia A, Duchesne PN, Li J, Muzzio M, Li Q, Zhang P, Sun S. Nano Lett, 2017, 17: 2727–2731

    Article  CAS  Google Scholar 

  13. Erini N, Beermann V, Gocyla M, Gliech M, Heggen M, Dunin-Borkowski RE, Strasser P. Angew Chem Int Ed, 2017, 56: 6533–6538

    Article  CAS  Google Scholar 

  14. Zhang S, Liu K, Liu Z, Liu M, Zhang Z, Qiao Z, Ming L, Gao C. Nano Lett, 2021, 21: 1074–1082

    Article  CAS  Google Scholar 

  15. Huang W, Ma XY, Wang H, Feng R, Zhou J, Duchesne PN, Zhang P, Chen F, Han N, Zhao F, Zhou J, Cai WB, Li Y. Adv Mater, 2017, 29: 1703057

    Article  Google Scholar 

  16. Jafarian M, Mahjani MG, Heli H, Gobal F, Khajehsharifi H, Hamedi MH. Electrochim Acta, 2003, 48: 3423–3429

    Article  CAS  Google Scholar 

  17. Zhang J, Ye J, Fan Q, Jiang Y, Zhu Y, Li H, Cao Z, Kuang Q, Cheng J, Zheng J, Xie Z. J Am Chem Soc, 2018, 140: 11232–11240

    Article  CAS  Google Scholar 

  18. Yuan Q, Doan HA, Grabow LC, Brankovic SR. J Am Chem Soc, 2017, 139: 13676–13679

    Article  CAS  Google Scholar 

  19. Yu K, Ning G, Yang J, Wang Y, Zhang X, Qin Y, Luan C, Yu L, Jiang Y, Luan X, Dong Z, Wang H, Dai X. J Catal, 2019, 375: 267–278

    Article  CAS  Google Scholar 

  20. Xie F, Ma L, Gan M, He H, Hu L, Jiang M, Zhang H. J Power Sources, 2019, 420: 73–81

    Article  CAS  Google Scholar 

  21. Wu T, Wang X, Emrehan Emre A, Fan J, Min Y, Xu Q, Sun S. J Energy Chem, 2021, 55: 48–54

    Article  CAS  Google Scholar 

  22. Shao M, Ning F, Zhao J, Wei M, Evans DG, Duan X. Adv Funct Mater, 2013, 23: 3513–3518

    Article  CAS  Google Scholar 

  23. Montini T, Melchionna M, Monai M, Fornasiero P. Chem Rev, 2016, 116: 5987–6041

    Article  CAS  Google Scholar 

  24. Qi Z, Chen L, Zhang S, Su J, Somorjai GA. J Am Chem Soc, 2021, 143: 60–64

    Article  CAS  Google Scholar 

  25. Tan Q, Shu C, Abbott J, Zhao Q, Liu L, Qu T, Chen Y, Zhu H, Liu Y, Wu G. ACS Catal, 2019, 9: 6362–6371

    Article  CAS  Google Scholar 

  26. Ning J, Zhou Y, Shen W. Sci China Chem, 2021, 64: 1103–1110

    Article  CAS  Google Scholar 

  27. Li ZY, Zhou J, Tang LS, Fu XP, Wei H, Xue M, Zhao YL, Jia CJ, Li XM, Chu HB, Li Y. J Mater Chem A, 2018, 6: 2318–2326

    Article  CAS  Google Scholar 

  28. Cai Z, Bi Y, Hu E, Liu W, Dwarica N, Tian Y, Li X, Kuang Y, Li Y, Yang X-, Wang H, Sun X. Adv Energy Mater, 2018, 8: 1701694

    Article  Google Scholar 

  29. Liu B, Liu J, Li T, Zhao Z, Gong XQ, Chen Y, Duan A, Jiang G, Wei Y. J Phys Chem C, 2015, 119: 12923–12934

    Article  CAS  Google Scholar 

  30. Bligaard T, Nørskov JK. Electrochim Acta, 2007, 52: 5512–5516

    Article  CAS  Google Scholar 

  31. Chen B, Ma Y, Ding L, Xu L, Wu Z, Yuan Q, Huang W. J Phys Chem C, 2013, 117: 5800–5810

    Article  CAS  Google Scholar 

  32. Song YL, Yin LL, Zhang J, Hu P, Gong XQ, Lu G. Surf Sci, 2013, 618: 140–147

    Article  CAS  Google Scholar 

  33. Wu XP, Gong XQ. Phys Rev Lett, 2016, 116: 086102

    Article  Google Scholar 

  34. Fronzi M, Piccinin S, Delley B, Traversa E, Stampfl C. Phys Chem Chem Phys, 2009, 11: 9188–9199

    Article  CAS  Google Scholar 

  35. Abi-aad E, Bechara R, Grimblot J, Aboukais A. Chem Mater, 1993, 5: 793–797

    Article  CAS  Google Scholar 

  36. Tao L, Shi Y, Huang YC, Chen R, Zhang Y, Huo J, Zou Y, Yu G, Luo J, Dong CL, Wang S. Nano Energy, 2018, 53: 604–612

    Article  CAS  Google Scholar 

  37. Wang T, Sun DC. Mater Res Bull, 2008, 43: 1754–1760

    Article  CAS  Google Scholar 

  38. Lin B, Fang B, Wu Y, Li C, Ni J, Wang X, Lin J, Au C, Jiang L. ACS Catal, 2021, 11: 1331–1339

    Article  CAS  Google Scholar 

  39. Jiang S, Zhang R, Liu H, Rao Y, Yu Y, Chen S, Yue Q, Zhang Y, Kang Y. J Am Chem Soc, 2020, 142: 6461–6466

    Article  CAS  Google Scholar 

  40. Liang X, Wang P, Gao Y, Huang H, Tong F, Zhang Q, Wang Z, Liu Y, Zheng Z, Dai Y, Huang B. Appl Catal B-Environ, 2020, 260: 118151

    Article  CAS  Google Scholar 

  41. Liu J, Luo Z, Li J, Yu X, Llorca J, Nasiou D, Arbiol J, Meyns M, Cabot A. Appl Catal B-Environ, 2019, 242: 258–266

    Article  CAS  Google Scholar 

  42. Wang Y, Zou S, Cai WB. Catalysts, 2015, 5: 1507–1534

    Article  CAS  Google Scholar 

  43. Wang F, Yu H, Tian Z, Xue H, Feng L. J Energy Chem, 2018, 27: 395–403

    Article  CAS  Google Scholar 

  44. Li M, Zhao Z, Zhang W, Luo M, Tao L, Sun Y, Xia Z, Chao Y, Yin K, Zhang Q, Gu L, Yang W, Yu Y, Lu G, Guo S. Adv Mater, 2021, 33: 2103762

    Article  CAS  Google Scholar 

  45. Li Z, Ai X, Chen H, Liang X, Li X, Wang D, Zou X. Chem Commun, 2021, 57: 5075–5078

    Article  CAS  Google Scholar 

  46. Li Z, Li J, Jiang K, Yuan S, Yu D, Wei H, Shi Z, Li X, Chu H. Chem Eng J, 2021, 411: 128527

    Article  CAS  Google Scholar 

  47. Hu S, Munoz F, Noborikawa J, Haan J, Scudiero L, Ha S. Appl Catal B-Environ, 2016, 180: 758–765

    Article  CAS  Google Scholar 

  48. Li Z, Xie Z, Chen H, Liang X, Ai X, Yuan L, Li X, Zou X. Chem Eng J, 2021, 419: 129568

    Article  CAS  Google Scholar 

  49. Zhang X, Zhou D, Wang X, Zhou J, Li J, Zhang M, Shen Y, Chu H, Qu Y. ACS Catal, 2020, 10: 3832–3837

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21875125, 22161033), the 111 Project (D20033), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2017JQ03), “Grassland Talent” Program and “Grassland Talent” Innovation Team of Inner Mongolia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Shi, Xiaotian Li or Haibin Chu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, J., Zheng, Z. et al. Roles of hydroxyl and oxygen vacancy of CeO2·xH2O in Pd-catalyzed ethanol electro-oxidation. Sci. China Chem. 65, 877–884 (2022). https://doi.org/10.1007/s11426-021-1220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1220-2

Keywords

Navigation