Skip to main content
Log in

Aqueous-processable, naphthalene diimide-based polymers for eco-friendly fabrication of high-performance, n-type organic electrolyte-gated transistors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic electrolyte-gated transistors (OEGTs) have the benefits of low power consumption and large current modulation. Nevertheless, the electrical performance of n-type OEGTs lags far behind that of p-type OEGTs. In this study, we design a series of polymers, P(NDITEG-T) and P(NDIMTEG-T), comprising a naphthalene diimide backbone for n-type charge transport and oligo(ethylene glycol) (OEG) side chains for high ionic conductivity and eco-friendly solution processing. The incorporation of the OEG chain facilitates the electrochemical doping of the semiconductor by ions to realize high-performance, n-type OEGTs. Notably, in OEGTs, P(NDITEG-T) achieves a high electron mobility of 1.0 × 10−1 cm2 V−1 s−1, which represents the highest value reported for solution-processed, n-type OEGTs. It is noted that the fabrication of the OEGTs is achieved by solution processing with eco-friendly ethanol/water mixtures in virtue of the hydrophilic OEG chains. This work demonstrates the molecular design of the P(NDITEG-T) polymer and its significant ability to produce aqueous-processable, high-performance, and n-type OEGTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo Y, Yu G, Liu Y. Adv Mater, 2010, 22: 4427–4447

    Article  CAS  Google Scholar 

  2. Tseng HR, Phan H, Luo C, Wang M, Perez LA, Patel SN, Ying L, Kramer EJ, Nguyen TQ, Bazan GC, Heeger AJ. Adv Mater, 2014, 26: 2993–2998

    Article  CAS  Google Scholar 

  3. Sun Q, Seung W, Kim BJ, Seo S, Kim SW, Cho JH. Adv Mater, 2015, 27: 3411–3417

    Article  CAS  Google Scholar 

  4. Lenz J, Del Giudice F, Geisenhof FR, Winterer F, Weitz RT. Nat Nanotechnol, 2019, 14: 579–585

    Article  CAS  Google Scholar 

  5. Nketia-Yawson B, Kang SJ, Tabi GD, Perinot A, Caironi M, Facchetti A, Noh YY. Adv Mater, 2017, 29: 1605685

    Article  Google Scholar 

  6. Cho JH, Lee J, Xia Y, Kim BS, He Y, Renn MJ, Lodge TP, Daniel Frisbie C. Nat Mater, 2008, 7: 900–906

    Article  CAS  Google Scholar 

  7. Kergoat L, Herlogsson L, Piro B, Pham MC, Horowitz G, Crispin X, Berggren M. Proc Natl Acad Sci USA, 2012, 109: 8394–8399

    Article  CAS  Google Scholar 

  8. Park DH, Park HW, Chung JW, Nam K, Choi S, Chung YS, Hwang H, Kim BS, Kim DH. Adv Funct Mater, 2019, 29: 1808909

    Article  Google Scholar 

  9. Okamoto H, Eguchi R, Hamao S, Goto H, Gotoh K, Sakai Y, Izumi M, Takaguchi Y, Gohda S, Kubozono Y. Sci Rep, 2014, 4: 5330

    Article  CAS  Google Scholar 

  10. Kim G, Kang SJ, Dutta GK, Han YK, Shin TJ, Noh YY, Yang C. J Am Chem Soc, 2014, 136: 9477–9483

    Article  CAS  Google Scholar 

  11. Kim D, Jang H, Lee S, Kim BJ, Kim FS. ACS Appl Mater Interfaces, 2021, 13: 1065–1075

    Article  CAS  Google Scholar 

  12. Nketia-Yawson B, Tabi GD, Noh YY. Org Electron, 2018, 52: 257–263

    Article  CAS  Google Scholar 

  13. Choi JH, Xie W, Gu Y, Frisbie CD, Lodge TP. ACS Appl Mater Interfaces, 2015, 7: 7294–7302

    Article  CAS  Google Scholar 

  14. Panzer MJ, Frisbie CD. J Am Chem Soc, 2005, 127: 6960–6961

    Article  CAS  Google Scholar 

  15. Malti A, Gabrielsson EO, Berggren M, Crispin X. Appl Phys Lett, 2011, 99: 063305

    Article  Google Scholar 

  16. Herlogsson L, Crispin X, Tierney S, Berggren M. Adv Mater, 2011, 23: 4684–4689

    Article  CAS  Google Scholar 

  17. Fan Q, Ma R, Liu T, Yu J, Xiao Y, Su W, Cai G, Li Y, Peng W, Guo T, Luo Z, Sun H, Hou L, Zhu W, Lu X, Gao F, Moons E, Yu D, Yan H, Wang E. Sci China Chem, 2021, 64: 1380–1388

    Article  CAS  Google Scholar 

  18. Guo H, Yang CY, Zhang X, Motta A, Feng K, Xia Y, Shi Y, Wu Z, Yang K, Chen J, Liao Q, Tang Y, Sun H, Woo HY, Fabiano S, Facchetti A, Guo X. Nature, 2021, 599: 67–73

    Article  CAS  Google Scholar 

  19. Kim MJ, Lee YW, Lee Y, Woo HY, Ho Cho J. J Mater Chem C, 2018, 6: 5698–5706

    Article  CAS  Google Scholar 

  20. Guo X, Kim FS, Jenekhe SA, Watson MD. J Am Chem Soc, 2009, 131: 7206–7207

    Article  CAS  Google Scholar 

  21. Lee S, Jeong D, Kim C, Lee C, Kang H, Woo HY, Kim BJ. ACS Nano, 2020, 14: 14493–14527

    Article  Google Scholar 

  22. Schmatz B, Yuan Z, Lang AW, Hernandez JL, Reichmanis E, Reynolds JR. ACS Cent Sci, 2017, 3: 961–967

    Article  CAS  Google Scholar 

  23. Shao M, He Y, Hong K, Rouleau CM, Geohegan DB, Xiao K. Polym Chem, 2013, 4: 5270–5274

    Article  CAS  Google Scholar 

  24. Nguyen TL, Lee C, Kim H, Kim Y, Lee W, Oh JH, Kim BJ, Woo HY. Macromolecules, 2017, 50: 4415–4424

    Article  CAS  Google Scholar 

  25. Giovannitti A, Sbircea DT, Inal S, Nielsen CB, Bandiello E, Hanifi DA, Sessolo M, Malliaras GG, McCulloch I, Rivnay J. Proc Natl Acad Sci USA, 2016, 113: 12017–12022

    Article  CAS  Google Scholar 

  26. Wang Y, Kim SW, Lee J, Matsumoto H, Kim BJ, Michinobu T. ACS Appl Mater Interfaces, 2019, 11: 22583–22594

    Article  CAS  Google Scholar 

  27. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A. Nature, 2009, 457: 679–686

    Article  CAS  Google Scholar 

  28. Lee S, Kim Y, Wu Z, Lee C, Oh SJ, Luan NT, Lee J, Jeong D, Zhang K, Huang F, Kim TS, Woo HY, Kim BJ. ACS Appl Mater Interfaces, 2019, 11: 45038–45047

    Article  CAS  Google Scholar 

  29. Lee S, Kim Y, Kim D, Jeong D, Kim GU, Kim J, Kim BJ. Macromolecules, 2021, 54: 7102–7112

    Article  CAS  Google Scholar 

  30. Lee C, Lee HR, Choi J, Kim Y, Nguyen TL, Lee W, Gautam B, Liu X, Zhang K, Huang F, Oh JH, Woo HY, Kim BJ. Adv Energy Mater, 2018, 8: 1802674

    Article  Google Scholar 

  31. Chen X, Zhang Z, Ding Z, Liu J, Wang L. Angew Chem Int Ed, 2016, 55: 10376–10380

    Article  CAS  Google Scholar 

  32. Huang K, Zhao X, Du Y, Kim S, Wang X, Lu H, Cho K, Zhang G, Qiu L. J Mater Chem C, 2019, 7: 7618–7626

    Article  CAS  Google Scholar 

  33. You H, Kim D, Cho HH, Lee C, Chong S, Ahn NY, Seo M, Kim J, Kim FS, Kim BJ. Adv Funct Mater, 2018, 28: 1803613

    Article  Google Scholar 

  34. Wang Y, Hasegawa T, Matsumoto H, Michinobu T. J Am Chem Soc, 2019, 141: 3566–3575

    Article  CAS  Google Scholar 

  35. Hwang YJ, Murari NM, Jenekhe SA. Polym Chem, 2013, 4: 3187–3195

    Article  CAS  Google Scholar 

  36. Guo X, Ortiz RP, Zheng Y, Hu Y, Noh YY, Baeg KJ, Facchetti A, Marks TJ. J Am Chem Soc, 2011, 133: 1405–1418

    Article  CAS  Google Scholar 

  37. Lee JW, Jeong D, Kim DJ, Phan TNL, Park JS, Kim TS, Kim BJ. Energy Environ Sci, 2021, 14: 4067–4076

    Article  CAS  Google Scholar 

  38. Lee C, Kang H, Lee W, Kim T, Kim KH, Woo HY, Wang C, Kim BJ. Adv Mater, 2015, 27: 2466–2471

    Article  CAS  Google Scholar 

  39. Fei Z, Boufflet P, Wood S, Wade J, Moriarty J, Gann E, Ratcliff EL, McNeill CR, Sirringhaus H, Kim JS, Heeney M. J Am Chem Soc, 2015, 137: 6866–6879

    Article  CAS  Google Scholar 

  40. Rivnay J, Steyrleuthner R, Jimison LH, Casadei A, Chen Z, Toney MF, Facchetti A, Neher D, Salleo A. Macromolecules, 2011, 44: 5246–5255

    Article  CAS  Google Scholar 

  41. Kim MJ, Jung AR, Lee M, Kim D, Ro S, Jin SM, Nguyen HD, Yang J, Lee KK, Lee E, Kang MS, Kim H, Choi JH, Kim BS, Cho JH. ACS Appl Mater Interfaces, 2017, 9: 40503–40515

    Article  CAS  Google Scholar 

  42. Rivnay J, Mannsfeld SCB, Miller CE, Salleo A, Toney MF. Chem Rev, 2012, 112: 5488–5519

    Article  CAS  Google Scholar 

  43. Wang Y, Hasegawa T, Matsumoto H, Mori T, Michinobu T. Adv Funct Mater, 2017, 27: 1604608

    Article  Google Scholar 

  44. Lee J, Shin ES, Kim YJ, Noh YY, Yang C. J Mater Chem C, 2020, 8: 296–302

    Article  CAS  Google Scholar 

  45. Lee JW, Sung MJ, Kim D, Lee S, You H, Kim FS, Kim YH, Kim BJ, Kwon SK. Chem Mater, 2020, 32: 2572–2582

    Article  CAS  Google Scholar 

  46. Choi Y, Kim H, Yang J, Shin SW, Um SH, Lee S, Kang MS, Cho JH. Chem Mater, 2018, 30: 4527–4535

    Article  CAS  Google Scholar 

  47. Savva A, Hallani R, Cendra C, Surgailis J, Hidalgo TC, Wustoni S, Sheelamanthula R, Chen X, Kirkus M, Giovannitti A, Salleo A, McCulloch I, Inal S. Adv Funct Mater, 2020, 30: 1907657

    Article  CAS  Google Scholar 

  48. Guardado JO, Salleo A. Adv Funct Mater, 2017, 27: 1701791

    Article  Google Scholar 

  49. Lan T, Soavi F, Marcaccio M, Brunner PL, Sayago J, Santato C. Chem Commun, 2018, 54: 5490–5493

    Article  CAS  Google Scholar 

  50. Peltekoff AJ, Hiller VE, Lopinski GP, Melville OA, Lessard BH. ACS Appl Polym Mater, 2019, 1: 3210–3221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Materials & Components Technology Development Program (20006537, Development of High Performance Insulation Materials for Flexible OLED Display TFT), the Ministry of Trade, Industry & Energy (MOTIE, Republic of Korea), and the grant from the Ministry of SMEs and Startups of the Korean Government (1425144083). We acknowledge the support by National Research Foundation of Korea (NRF) Grant of the Korean Government (2017M3A7B8065584).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong Ho Cho or Bumjoon J. Kim.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

11426_2021_1212_MOESM1_ESM.pdf

Aqueous-Processable, Naphthalene Diimide-Based Polymers for Eco-Friendly Fabrication Of High-Performance, n-Type Organic Electrolyte-Gated Transistors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, D., Kim, M.J., Lee, S. et al. Aqueous-processable, naphthalene diimide-based polymers for eco-friendly fabrication of high-performance, n-type organic electrolyte-gated transistors. Sci. China Chem. 65, 973–978 (2022). https://doi.org/10.1007/s11426-021-1212-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1212-5

Keywords

Navigation