Skip to main content
Log in

Precise electro-reduction of alkyl halides for radical defluorinative alkylation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Reported here is a precise electro-reduction strategy for radical defluorinative alkylation towards the synthesis of gem-difluoroalkenes from α-trifluoromethylstyrenes. According to the redox-potential difference of the radical precursors, direct or indirect electrolysis is respectively adopted to realize the precise reduction. An easy-to-handle, catalyst- and metal-free condition is developed for the reduction of alkyl radical precursors that are generally easier to be reduced than α-trifluoromethylstyrenes, while a novel electro-Ni-catalytic system is established for the electro-reduction of alkyl bromides or chlorides towards the electrochemical synthesis of gem-difluoroalkenes. The merit of this protocol is exhibited by its mild conditions, wide substrate scope, and scalable preparation. Mechanistic studies and DFT calculations proved that the coordination of α-trifluoromethylstyrenes to Ni-catalyst prevents the direct reduction of the alkene and, in turn, promotes the activation of alkyl bromide through halogen atom transfer mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan M, Kawamata Y, Baran PS. Chem Rev, 2017, 117: 13230–13319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem Rev, 2019, 119: 6769–6787

    Article  CAS  PubMed  Google Scholar 

  3. Jiang Y, Xu K, Zeng C. Chem Rev, 2018, 118: 4485–4540

    Article  CAS  PubMed  Google Scholar 

  4. Albert J F. Synthetic Organic Electrochemistry. New York: John Wiley & Sons, 1989. 339

    Google Scholar 

  5. Steckhan E. In: Organic Syntheses with Electrochemically Regenerable Redox Systems. Berlin, Heidelberg: Springer, 1987. 1–69

    Google Scholar 

  6. Francke R, Little RD. Chem Soc Rev, 2014, 43: 2492–2521

    Article  CAS  PubMed  Google Scholar 

  7. Siu JC, Fu N, Lin S. Acc Chem Res, 2020, 53: 547–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmidt W, Steckhan E. Angew Chem Int Ed, 1978, 17: 673–674

    Article  Google Scholar 

  9. Xiong P, Xu HC. Acc Chem Res, 2019, 52: 3339–3350

    Article  CAS  PubMed  Google Scholar 

  10. Ma C, Fang P, Liu ZR, Xu SS, Xu K, Cheng X, Lei A, Xu HC, Zeng C, Mei TS. Sci Bull, 2021, 66: 2412–2429

    Article  CAS  Google Scholar 

  11. Jiao KJ, Xing YK, Yang QL, Qiu H, Mei TS. Acc Chem Res, 2020, 53: 300–310

    Article  CAS  PubMed  Google Scholar 

  12. Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Chem Rev, 2022, 122: 3180–3218

    Article  CAS  PubMed  Google Scholar 

  13. Rafiee M, Miles KC, Stahl SS. J Am Chem Soc, 2015, 137: 14751–14757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang B, Peng P, Ma W, Liu Z, Huang C, Cao Y, Hu P, Qi X, Lu Q. J Am Chem Soc, 2021, 143: 12985–12991

    Article  CAS  PubMed  Google Scholar 

  15. Muller K, Faeh C, Diederich F. Science, 2007, 317: 1881–1886

    Article  PubMed  CAS  Google Scholar 

  16. Liu Q, Ni C, Hu J. Natl Sci Rev, 2017, 4: 303–325

    Article  CAS  Google Scholar 

  17. Leriche C, He X, Chang CT, Liu H. J Am Chem Soc, 2003, 125: 6348–6349

    Article  CAS  PubMed  Google Scholar 

  18. Magueur G, Crousse B, Ourévitch M, Bonnet-Delpon D, Bégué JP. J Fluorine Chem, 2006, 127: 637–642

    Article  CAS  Google Scholar 

  19. Pan Y, Qiu J, Silverman RB. J Med Chem, 2003, 46: 5292–5293

    Article  CAS  PubMed  Google Scholar 

  20. Ai HJ, Ma X, Song Q, Wu XF. Sci China Chem, 2021, 64: 1630–1659

    Article  CAS  Google Scholar 

  21. Zhang X, Cao S. Tetrahedron Lett, 2017, 58: 375–392

    Article  CAS  Google Scholar 

  22. Ni C, Hu J. Synthesis, 2014, 46: 842–863

    Article  CAS  Google Scholar 

  23. Tian F, Yan G, Yu J. Chem Commun, 2019, 55: 13486–13505

    Article  CAS  Google Scholar 

  24. Xing W, Wang J, Fu M, Fu Y. Chin J Chem, 2022, 40: 323–328

    Article  CAS  Google Scholar 

  25. Kobayashi O, Uraguchi D, Yamakawa T. J Fluorine Chem, 2009, 130: 591–594

    Article  CAS  Google Scholar 

  26. Corberán R, Mszar NW, Hoveyda AH. Angew Chem Int Ed, 2011, 50: 7079–7082

    Article  CAS  Google Scholar 

  27. Dai W, Lin Y, Wan Y, Cao S. Org Chem Front, 2018, 5: 55–58

    Article  CAS  Google Scholar 

  28. Cai Y, Zeng H, Zhu C, Liu C, Liu G, Jiang H. Org Chem Front, 2020, 7: 1260–1265

    Article  CAS  Google Scholar 

  29. Lang SB, Wiles RJ, Kelly CB, Molander GA. Angew Chem Int Ed, 2017, 56: 15073–15077

    Article  CAS  Google Scholar 

  30. Phelan JP, Lang SB, Sim J, Berritt S, Peat AJ, Billings K, Fan L, Molander GA. J Am Chem Soc, 2019, 141: 3723–3732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang M, Zhang Z, He Y, Zou T, Qi Z, Fu Q, Wei J, Lu J, Wei S, Yi D. Adv Synth Catal, 2021, 363: 2110–2116

    Article  CAS  Google Scholar 

  32. Xu W, Jiang H, Leng J, Ong HW, Wu J. Angew Chem Int Ed, 2020, 59: 4009–4016

    Article  CAS  Google Scholar 

  33. Gao QS, Niu Z, Chen Y, Sun J, Han WY, Wang JY, Yu M, Zhou MD. Org Lett, 2021, 23: 6153–6157

    Article  CAS  PubMed  Google Scholar 

  34. Yue WJ, Day CS, Martin R. J Am Chem Soc, 2021, 143: 6395–6400

    Article  CAS  PubMed  Google Scholar 

  35. Guo YQ, Wu Y, Wang R, Song H, Liu Y, Wang Q. Org Lett, 2021, 23: 2353–2358

    Article  CAS  PubMed  Google Scholar 

  36. Li CY, Ma Y, Lei ZW, Hu XG. Org Lett, 2021, 23: 8899–8904

    Article  CAS  PubMed  Google Scholar 

  37. Chen F, Xu X, He Y, Huang G, Zhu S. Angew Chem Int Ed, 2020, 59: 5398–5402

    Article  CAS  Google Scholar 

  38. Ding D, Lan Y, Lin Z, Wang C. Org Lett, 2019, 21: 2723–2730

    Article  CAS  PubMed  Google Scholar 

  39. Lin Z, Lan Y, Wang C. Org Lett, 2019, 21: 8316–8322

    Article  CAS  PubMed  Google Scholar 

  40. Yao C, Wang S, Norton J, Hammond M. J Am Chem Soc, 2020, 142: 4793–4799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang C, Lin Z, Zhu Y, Wang C. J Am Chem Soc, 2021, 143: 11602–11610

    Article  CAS  PubMed  Google Scholar 

  42. Lu X, Wang XX, Gong TJ, Pi JJ, He SJ, Fu Y. Chem Sci, 2019, 10: 809–814

    Article  CAS  PubMed  Google Scholar 

  43. Lan Y, Yang F, Wang C. ACS Catal, 2018, 8: 9245–9251

    Article  CAS  Google Scholar 

  44. Lu L, Li H, Zheng Y, Bu F, Lei A. CCS Chem, 2021, 3: 2669–2675

    Article  CAS  Google Scholar 

  45. Gao XT, Zhang Z, Wang X, Tian JS, Xie SL, Zhou F, Zhou J. Chem Sci, 2020, 11: 10414–10420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu Y, Tao X, Mao Y, Yuan X, Qiu J, Kong L, Ni S, Guo K, Wang Y, Pan Y. Nat Commun, 2021, 12: 6745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang H, Liang M, Zhang X, He MK, Yang C, Guo L, Xia W. Org Chem Front, 2021, 9: 95–101

    Article  CAS  Google Scholar 

  48. Claraz A, Allain C, Masson G. Chem Eur J, 2022, 28: e202103337

    Article  CAS  PubMed  Google Scholar 

  49. Poutrel P, Pannecoucke X, Jubault P, Poisson T. Org Lett, 2020, 22: 4858–4863

    Article  CAS  PubMed  Google Scholar 

  50. Hu J, Yang Y, Lou Z, Ni C, Hu J. Chin J Chem, 2018, 36: 1202–1208

    Article  CAS  Google Scholar 

  51. Ichitsuka T, Fujita T, Ichikawa J. ACS Catal, 2015, 5: 5947–5950

    Article  CAS  Google Scholar 

  52. Ichitsuka T, Fujita T, Arita T, Ichikawa J. Angew Chem Int Ed, 2014, 53: 7564–7568

    Article  CAS  Google Scholar 

  53. Guo L, Yuan M, Zhang Y, Wang F, Zhu S, Gutierrez O, Chu L. J Am Chem Soc, 2020, 142: 20390–20399

    Article  CAS  Google Scholar 

  54. Yuan M, Song Z, Badir SO, Molander GA, Gutierrez O. J Am Chem Soc, 2020, 142: 7225–7234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA1500100), the National Natural Science Foundation of China (22031008) and the Science Foundation of Wuhan (2020010601012192). The theoretical calculations were performed on the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaotian Qi, Zhiliang Huang or Aiwen Lei.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Wang, S., Liu, Z. et al. Precise electro-reduction of alkyl halides for radical defluorinative alkylation. Sci. China Chem. 65, 762–770 (2022). https://doi.org/10.1007/s11426-021-1210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1210-y

Keywords

Navigation