Skip to main content
Log in

A hybrid catalyst for efficient electrochemical N2 fixation formed by decorating amorphous MoS3 nanosheets with MIL-101(Fe) nanodots

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 12 December 2022

This article has been updated

Abstract

Metal-organic frameworks possessing relatively large pores, high surface areas, and unsaturated metal sites are attractive materials for use as electrocatalysts in the reduction of N2 to NH3. In this work, a MIL-101(Fe)/MoS3 hybrid catalyst, prepared by using a precursor-transformation strategy, is shown to be an effective electrocatalyst for the N2 reduction reaction (NRR). Under solvothermal conditions, micro-sized octahedral MIL-101(Fe) precursors are converted into ultra-small nanodots, while amorphous MoS3 derived from (NH4)2MoS4 provides a surface suitable for anchoring the MIL-101(Fe) nanodots. The as-prepared composite exhibits excellent electrocatalytic activity and durability for the NRR with a Faraday efficiency of 36.71% and an NH3 yield of 25.7 µg h−1 mg −1cat at −0.1 V vs. RHE in 0.1 M HCl. The results show that the dispersion and adherence of MIL-101(Fe) nanodots on amorphous MoS3 improves the exposure of active centers and aids mass transfer, resulting in greatly enhanced catalytic activity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Guo W, Zhang K, Liang Z, Zou R, Xu Q. Chem Soc Rev, 2019, 48: 5658–5716

    Article  CAS  Google Scholar 

  2. Li L, Tang C, Cui X, Zheng Y, Wang X, Xu H, Zhang S, Shao T, Davey K, Qiao SZ. Angew Chem Int Ed, 2021, 60: 14131–14137

    Article  CAS  Google Scholar 

  3. Zhu X, Mou S, Peng Q, Liu Q, Luo Y, Chen G, Gao S, Sun X. J Mater Chem A, 2020, 8: 1545–1556

    Article  CAS  Google Scholar 

  4. Zhao L, Kuang X, Chen C, Sun X, Wang Z, Wei Q. Chem Commun, 2019, 55: 10170–10173

    Article  CAS  Google Scholar 

  5. Zhang L, Ji X, Ren X, Luo Y, Shi X, Asiri AM, Zheng B, Sun X. ACS Sustain Chem Eng, 2018, 6: 9550–9554

    Article  CAS  Google Scholar 

  6. Xue X, Chen R, Yan C, Zhao P, Hu Y, Zhang W, Yang S, Jin Z. Nano Res, 2019, 12: 1229–1249

    Article  CAS  Google Scholar 

  7. Bao D, Zhang Q, Meng FL, Zhong HX, Shi MM, Zhang Y, Yan JM, Jiang Q, Zhang XB. Adv Mater, 2017, 29: 1604799

    Article  Google Scholar 

  8. Foster SL, Bakovic SIP, Duda RD, Maheshwari S, Milton RD, Minteer SD, Janik MJ, Renner JN, Greenlee LF. Nat Catal, 2018, 1: 490–500

    Article  Google Scholar 

  9. Suryanto BHR, Du HL, Wang D, Chen J, Simonov AN, MacFarlane DR. Nat Catal, 2019, 2: 290–296

    Article  CAS  Google Scholar 

  10. Ren Y, Yu C, Tan X, Huang H, Wei Q, Qiu J. Energy Environ Sci, 2021, 14: 1176–1193

    Article  CAS  Google Scholar 

  11. Qing G, Ghazfar R, Jackowski ST, Habibzadeh F, Ashtiani MM, Chen CP, Smith III MR, Hamann TW. Chem Rev, 2020, 120: 5437–5516

    Article  CAS  Google Scholar 

  12. Li L, Tang C, Jin H, Davey K, Qiao SZ. Chem, 2021, 7: 3232–3255

    Article  CAS  Google Scholar 

  13. Geng Z, Liu Y, Kong X, Li P, Li K, Liu Z, Du J, Shu M, Si R, Zeng J. Adv Mater, 2018, 30: 1803498

    Article  Google Scholar 

  14. Hao YC, Guo Y, Chen LW, Shu M, Wang XY, Bu TA, Gao WY, Zhang N, Su X, Feng X, Zhou JW, Wang B, Hu CW, Yin AX, Si R, Zhang YW, Yan CH. Nat Catal, 2019, 2: 448–456

    Article  CAS  Google Scholar 

  15. Xue ZH, Zhang SN, Lin YX, Su H, Zhai GY, Han JT, Yu QY, Li XH, Antonietti M, Chen JS. J Am Chem Soc, 2019, 141: 14976–14980

    Article  CAS  Google Scholar 

  16. Su H, Chen L, Chen Y, Si R, Wu Y, Wu X, Geng Z, Zhang W, Zeng J. Angew Chem Int Ed, 2020, 59: 20411–20416

    Article  CAS  Google Scholar 

  17. Luo S, Li X, Zhang B, Luo Z, Luo M. ACS Appl Mater Interfaces, 2019, 11: 26891–26897

    Article  CAS  Google Scholar 

  18. Wang Z, Gong F, Zhang L, Wang R, Ji L, Liu Q, Luo Y, Guo H, Li Y, Gao P, Shi X, Li B, Tang B, Sun X. Adv Sci, 2019, 6: 1801182

    Article  Google Scholar 

  19. Kong J, Lim A, Yoon C, Jang JH, Ham HC, Han J, Nam S, Kim D, Sung YE, Choi J, Park HS. ACS Sustain Chem Eng, 2017, 5: 10986–10995

    Article  CAS  Google Scholar 

  20. Yao D, Tang C, Li L, Xia B, Vasileff A, Jin H, Zhang Y, Qiao SZ. Adv Energy Mater, 2020, 10: 2001289

    Article  CAS  Google Scholar 

  21. Fan Q, Choi C, Yan C, Liu Y, Qiu J, Hong S, Jung Y, Sun Z. Chem Commun, 2019, 55: 4246–4249

    Article  CAS  Google Scholar 

  22. Li Z, Liu X, Jin W, Hu Q, Zhao Y. J Colloid Interface Sci, 2019, 554: 692–704

    Article  CAS  Google Scholar 

  23. Li MH, Liu YB, Li F, Shen CS, Kaneti YV, Yamauchi Y, Yuliarto B, Chen B, Wang CC. Environ Sci Technol, 2021, 55: 13209–13218

    CAS  Google Scholar 

  24. Salunkhe RR, Kaneti YV, Yamauchi Y. ACS Nano, 2017, 11: 5293–5308

    Article  CAS  Google Scholar 

  25. Dang S, Ma E, Sun ZM, Zhang H. J Mater Chem, 2012, 22: 16920–16926

    Article  CAS  Google Scholar 

  26. Zhang S, Yang Q, Xu X, Liu X, Li Q, Guo J, Torad NL, Alshehri SM, Ahamad T, Hossain MSA, Kaneti YV, Yamauchi Y. Nanoscale, 2020, 12: 15611–15619

    Article  CAS  Google Scholar 

  27. Nivetha R, Sajeev A, Mary Paul A, Gothandapani K, Gnanasekar S, Bhardwaj P, Jacob G, Sellappan R, Raghavan V, N KC, Pitchaimuthu S, Jeong SK, Nirmala Grace A. Mater Res Express, 2020, 7: 114001

    Article  CAS  Google Scholar 

  28. Thangasamy P, Shanmuganathan S, Subramanian V. Nanoscale Adv, 2020, 2: 2073–2079

    Article  CAS  Google Scholar 

  29. Zhang S, Xia W, Yang Q, Valentino Kaneti Y, Xu X, Alshehri SM, Ahamad T, Hossain MSA, Na J, Tang J, Yamauchi Y. Chem Eng J, 2020, 396: 125154

    Article  CAS  Google Scholar 

  30. Shi MM, Bao D, Li SJ, Wulan BR, Yan JM, Jiang Q. Adv Energy Mater, 2018, 8: 1800124

    Article  Google Scholar 

  31. Cao Y, Li P, Wu T, Liu M, Zhang Y. Chem Asian J, 2020, 15: 1272–1276

    Article  CAS  Google Scholar 

  32. Zhao X, Yin F, Liu N, Li G, Fan T, Chen B. J Mater Sci, 2017, 52: 10175–10185

    Article  CAS  Google Scholar 

  33. Milton RD, Abdellaoui S, Khadka N, Dean DR, Leech D, Seefeldt LC, Minteer SD. Energy Environ Sci, 2016, 9: 2550–2554

    Article  CAS  Google Scholar 

  34. Skúlason E, Bligaard T, Gudmundsdóttir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jónsson H, Nørskov JK. Phys Chem Chem Phys, 2012, 14: 1235–1245

    Article  Google Scholar 

  35. Azofra LM, Sun C, Cavallo L, MacFarlane DR. Chem Eur J, 2017, 23: 8275–8279

    Article  CAS  Google Scholar 

  36. Duan J, Sun Y, Chen S, Chen X, Zhao C. J Mater Chem A, 2020, 8: 18810–18815

    Article  CAS  Google Scholar 

  37. Thakur B, Karve VV, Sun DT, Semrau AL, Weiß LJK, Grob L, Fischer RA, Queen WL, Wolfrum B. Adv Mater Technol, 2021, 6: 2001048

    Article  CAS  Google Scholar 

  38. Li G, Li F, Liu J, Fan C. J Solid State Chem, 2020, 285: 121245

    Article  CAS  Google Scholar 

  39. Zhao S, Wang Y, Dong J, He CT, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z. Nat Energy, 2016, 1: 16184

    Article  CAS  Google Scholar 

  40. Zhang B, Zheng Y, Ma T, Yang C, Peng Y, Zhou Z, Zhou M, Li S, Wang Y, Cheng C. Adv Mater, 2021, 33: 2006042

    Article  CAS  Google Scholar 

  41. Gao Y, Cai Z, Wu X, Lv Z, Wu P, Cai C. ACS Catal, 2018, 8: 10364–10374

    Article  CAS  Google Scholar 

  42. Peng Y, Lu B, Chen S. Adv Mater, 2018, 30: 1801995

    Article  Google Scholar 

  43. Pazhamalai P, Krishnamoorthy K, Sahoo S, Mariappan VK, Kim SJ. Inorg Chem Front, 2019, 6: 2387–2395

    Article  CAS  Google Scholar 

  44. Chu K, Nan H, Li Q, Guo Y, Tian Y, Liu W. J Energy Chem, 2021, 53: 132–138

    Article  CAS  Google Scholar 

  45. Chang C, Chan SS. J Catal, 1981, 72: 139–148

    Article  CAS  Google Scholar 

  46. Li X, Wang J, Liu X, Liu L, Cha D, Zheng X, Yousef AA, Song K, Zhu Y, Zhang D, Han Y. J Am Chem Soc, 2019, 141: 12021–12028

    Article  CAS  Google Scholar 

  47. Liu B, Jin Z, Bai L, Liang J, Zhang Q, Wang N, Liu C, Wei C, Zhao Y, Zhang X. J Mater Chem A, 2016, 4: 14204–14212

    Article  CAS  Google Scholar 

  48. Weber T, Muijsers JC, Niemantsverdriet JW. J Phys Chem, 2002, 99: 9194–9200

    Article  Google Scholar 

  49. Fang Z, Fernandez D, Wang N, Bai Z, Yu G. Sci China Chem, 2020, 63: 1570–1577

    Article  CAS  Google Scholar 

  50. Liu HM, Han SH, Zhao Y, Zhu YY, Tian XL, Zeng JH, Jiang JX, Xia BY, Chen Y. J Mater Chem A, 2018, 6: 3211–3217

    Article  CAS  Google Scholar 

  51. Yang Y, Wang SQ, Wen H, Ye T, Chen J, Li CP, Du M. Angew Chem Int Ed, 2019, 58: 15362–15366

    Article  CAS  Google Scholar 

  52. Zhang J, Ji Y, Wang P, Shao Q, Li Y, Huang X. Adv Funct Mater, 2019, 30: 1906579

    Article  Google Scholar 

  53. Tong W, Huang B, Wang P, Shao Q, Huang X. Natl Sci Rev, 2021, 8

  54. Yang C, Huang B, Bai S, Feng Y, Shao Q, Huang X. Adv Mater, 2020, 32: 2001267

    Article  CAS  Google Scholar 

  55. Cheng H, Ding LX, Chen GF, Zhang L, Xue J, Wang H. Adv Mater, 2018, 30: 1803694

    Article  Google Scholar 

  56. Tong W, Huang B, Wang P, Li L, Shao Q, Huang X. Angew Chem Int Ed, 2020, 59: 2649–2653

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21773163, 21531006, 22001021), the State Key Laboratory of Organometallic Chemistry of Shanghai Institute of Organic Chemistry (KF2021005), Natural Science Foundation of Jiangsu Province (BK20201048), Natural Science Research Project of Higher Education Institutions in Jiangsu Province (20KJB150008), Collaborative Innovation Center of Suzhou Nano Science and Technology, and the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201905). We are grateful to the useful comments and suggestions of the editor and the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei-Long Li or Jian-Ping Lang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2021_1206_MOESM1_ESM.pdf

A hybrid catalyst for efficient electrochemical N2 fixation formed by decorating amorphous MoS3 nanosheets with MIL-101(Fe) nanodots

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, WY., Li, C., Li, FL. et al. A hybrid catalyst for efficient electrochemical N2 fixation formed by decorating amorphous MoS3 nanosheets with MIL-101(Fe) nanodots. Sci. China Chem. 65, 885–891 (2022). https://doi.org/10.1007/s11426-021-1206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1206-2

Keywords

Navigation