Skip to main content
Log in

Design, synthesis, and applications of stereospecific 1,3-diene carbonyls

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The strategy toward the synthesis of various 1,3-dienals or 1,3-dienones is disclosed between diazo compounds and furans, which features metal-free, additive-free, broad functional group tolerance, and readily accessible starting materials. Notably, this strategy is applicable in both intramolecular and intermolecular protocols. Mechanistic studies suggested that the reactions undergo a cyclopropanation/rearrangement sequence. With an E/E-1,3-dienal, corresponding N-tosylhydrazones were readily prepared and subjected to phenylboronic acid to form a double bond migration product and indoles to construct a five-member ring via [3 + 2] annulation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inano H, Suzuki K, Ishii-Ohba H, Yamanouchi H, Takahashi M, Wakabayashi K. Carcinogenesis, 1993, 14: 2157–2163

    Article  CAS  Google Scholar 

  2. Paik IH, Xie S, Shapiro TA, Labonte T, Narducci Sarjeant AA, Baege AC, Posner GH. J Med Chem, 2006, 49: 2731–2734

    Article  CAS  Google Scholar 

  3. Reymond S, Cossy J. Chem Rev, 2008, 108: 5359–5406

    Article  CAS  Google Scholar 

  4. Zhu Y, Cornwall RG, Du H, Zhao B, Shi Y. Acc Chem Res, 2014, 47: 3665–3678

    Article  CAS  Google Scholar 

  5. Chen JR, Hu XQ, Lu LQ, Xiao WJ. Chem Rev, 2015, 115: 5301–5365

    Article  CAS  Google Scholar 

  6. Heravi MM, Ahmadi T, Ghavidel M, Heidari B, Hamidi H. RSC Adv, 2015, 5: 101999–102075

    Article  CAS  Google Scholar 

  7. Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Angew Chem Int Ed, 2016, 55: 4156–4186

    Article  Google Scholar 

  8. Diels O, Alder K. Justus Liebigs Ann Chem, 1928, 460: 98–122

    Article  CAS  Google Scholar 

  9. Bradley AZ, Johnson RP. J Am Chem Soc, 1997, 119: 9917–9918

    Article  CAS  Google Scholar 

  10. Du H, Zhao B, Shi Y. J Am Chem Soc, 2007, 129: 762–763

    Article  CAS  Google Scholar 

  11. Yang XH, Dong VM. J Am Chem Soc, 2017, 139: 1774–1777

    Article  CAS  Google Scholar 

  12. Nie SZ, Davison RT, Dong VM. J Am Chem Soc, 2018, 140: 16450–16454

    Article  CAS  Google Scholar 

  13. Chen XW, Zhu L, Gui YY, Jing K, Jiang YX, Bo ZY, Lan Y, Li J, Yu DG. J Am Chem Soc, 2019, 141: 18825–18835

    Article  CAS  Google Scholar 

  14. Zhang Q, Dong D, Zi W. J Am Chem Soc, 2020, 142: 15860–15869

    Article  CAS  Google Scholar 

  15. Zhang Z, Xiao F, Wu HM, Dong XQ, Wang CJ. Org Lett, 2020, 22: 569–574

    Article  CAS  Google Scholar 

  16. Yoo KS, Yoon CH, Mishra RK, Jung YC, Yi SW, Jung KW. J Am Chem Soc, 2006, 128: 16384–16393

    Article  CAS  Google Scholar 

  17. Liu Q, Wang ZY, Peng XS, Wong HNC. J Org Chem, 2018, 83: 6325–6333

    Article  CAS  Google Scholar 

  18. Nguyen VT, Dang HT, Pham HH, Nguyen VD, Flores-Hansen C, Arman HD, Larionov OV. J Am Chem Soc, 2018, 140: 8434–8438

    Article  CAS  Google Scholar 

  19. Lv L, Zhu D, Qiu Z, Li J, Li CJ. ACS Catal, 2019, 9: 9199–9205

    Article  CAS  Google Scholar 

  20. Hamaguchi T, Takahashi Y, Tsuji H, Kawatsura M. Org Lett, 2020, 22: 1124–1129

    Article  CAS  Google Scholar 

  21. Wang GW, Boyd O, Young TA, Bertrand SM, Bower JF. J Am Chem Soc, 2020, 142: 1740–1745

    Article  CAS  Google Scholar 

  22. Mehta G, Rao HSP. Synthesis of conjugated dienes and polyenes. Secondary Synthesis of conjugated dienes and polyenes, 1997, 359–480

  23. Szliszka E, Czuba Z, Domino M, Mazur B, Zydowicz G, Krol W. Molecules, 2009, 14: 738–754

    Article  CAS  Google Scholar 

  24. De Paolis M, Chataigner I, Maddaluno J. Recent advances in stereoselective synthesis of 1,3-dienes. Secondary Recent advances in stereoselective synthesis of 1,3-dienes, 2012,87–146

  25. Gigant N, Bäckvall JE. Chem Eur J, 2013, 19: 10799–10803

    Article  CAS  Google Scholar 

  26. Feng R, Yu W, Wang K, Liu Z, Zhang Y. Adv Synth Catal, 2014, 356: 1501–1508

    Article  CAS  Google Scholar 

  27. Hu XH, Zhang J, Yang XF, Xu YH, Loh TP. J Am Chem Soc, 2015, 137: 3169–3172

    Article  CAS  Google Scholar 

  28. Zhao Q, Tognetti V, Joubert L, Besset T, Pannecoucke X, Bouillon JP, Poisson T. Org Lett, 2017, 19: 2106–2109

    Article  CAS  Google Scholar 

  29. Zhao Q, Wang J, Besset T, Pannecoucke X, Bouillon JP, Poisson T. Tetrahedron, 2018, 74: 6033–6040

    Article  CAS  Google Scholar 

  30. Meng K, Sun Y, Zhang J, Zhang K, Ji X, Ding L, Zhong G. Org Lett, 2019, 21: 8219–8224

    Article  CAS  Google Scholar 

  31. Wang YC, Huang YH, Tsai HC, Basha RS, Chou CM. Org Lett, 2020, 22: 6765–6770

    Article  CAS  Google Scholar 

  32. Dethe DH, Beeralingappa NC, Das S, Nirpal AK. Chem Sci, 2021, 12: 4367–4372

    Article  CAS  Google Scholar 

  33. Li Y, Hao M, Chang Y-, Liu Y, Wang W-, Sun N, Zhu W-, Gao Z. Chin J Chem, 2021, 39: 2962–2966

    Article  CAS  Google Scholar 

  34. Wang H, Gu S, Yan Q, Ding L, Chen FE. Green Synthesis Catal, 2020, 1: 12–25

    Article  Google Scholar 

  35. Hu TJ, Li MY, Zhao Q, Feng CG, Lin GQ. Angew Chem Int Ed, 2018, 57: 5871–5875

    Article  CAS  Google Scholar 

  36. Al-Jawaheri Y, Kimber MC. Org Lett, 2016, 18: 3502–3505

    Article  CAS  Google Scholar 

  37. Wang J, Dong Z, Yang C, Dong G. Nat Chem, 2019, 11: 1106–1112

    Article  CAS  Google Scholar 

  38. Ma X, Li P, Liang J, An H, Yang K, Song Q. Cell Rep Phys Sci, 2021, 2: 100629

    Article  CAS  Google Scholar 

  39. Flynn AB, Ogilvie WW. Chem Rev, 2007, 107: 4698–4745

    Article  CAS  Google Scholar 

  40. Deagostino A, Prandi C, Tabasso S, Venturello P. Molecules, 2010, 15: 2667–2685

    Article  CAS  Google Scholar 

  41. Kuang Z, Gao G, Song Q. Sci China Chem, 2018, 62: 62–66

    Article  Google Scholar 

  42. Xiang L, Yang K, Song QL. Chin Chem Lett, 2017, 28: 517–520

    Article  CAS  Google Scholar 

  43. Smaldone RA, Thompson CM, Evans M, Voit W. Nat Chem, 2017, 9: 97–102

    Article  CAS  Google Scholar 

  44. Xia Y, Qiu D, Wang J. Chem Rev, 2017, 117: 13810–13889

    Article  CAS  Google Scholar 

  45. Zhang Z, Sheng Z, Yu W, Wu G, Zhang R, Chu WD, Zhang Y, Wang J. Nat Chem, 2017, 9: 970–976

    Article  CAS  Google Scholar 

  46. Doyle MP, Forbes DC. Chem Rev, 1998, 98: 911–936

    Article  CAS  Google Scholar 

  47. Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem Rev, 2010, 110: 704–724

    Article  CAS  Google Scholar 

  48. Xu X, Doyle MP. Acc Chem Res, 2014, 47: 1396–1405

    Article  CAS  Google Scholar 

  49. Cheng QQ, Yedoyan J, Arman H, Doyle MP. J Am Chem Soc, 2016, 138: 44–47

    Article  CAS  Google Scholar 

  50. Cheng QQ, Yedoyan J, Arman H, Doyle MP. Angew Chem Int Ed, 2016, 55: 5573–5576

    Article  CAS  Google Scholar 

  51. Qiu H, Srinivas HD, Zavalij PY, Doyle MP. J Am Chem Soc, 2016, 138: 1808–1811

    Article  CAS  Google Scholar 

  52. Deng Y, Massey LA, Rodriguez Núñez YA, Arman H, Doyle MP. Angew Chem Int Ed, 2017, 56: 12292–12296

    Article  CAS  Google Scholar 

  53. Duan A, Yu P, Liu F, Qiu H, Gu FL, Doyle MP, Houk KN. J Am Chem Soc, 2017, 139: 2766–2770

    Article  CAS  Google Scholar 

  54. Davies HML, Beckwith REJ. Chem Rev, 2003, 103: 2861–2904

    Article  CAS  Google Scholar 

  55. Davies HML, Manning JR. Nature, 2008, 451: 417–424

    Article  CAS  Google Scholar 

  56. Davies HML, Morton D. Chem Soc Rev, 2011, 40: 1857–1869

    Article  CAS  Google Scholar 

  57. Briones JF, Davies HML. J Am Chem Soc, 2012, 134: 11916–11919

    Article  CAS  Google Scholar 

  58. Guzmán PE, Lian Y, Davies HML. Angew Chem Int Ed, 2014, 53: 13083–13087

    Article  Google Scholar 

  59. Fu L, Guptill DM, Davies HML. J Am Chem Soc, 2016, 138: 5761–5764

    Article  CAS  Google Scholar 

  60. Wei B, Sharland JC, Lin P, Wilkerson-Hill SM, Fullilove FA, McKinnon S, Blackmond DG, Davies HML. ACS Catal, 2020, 10: 1161–1170

    Article  CAS  Google Scholar 

  61. Zhang B, Davies HML. Angew Chem Int Ed, 2020, 59: 4937–4941

    Article  CAS  Google Scholar 

  62. Taniguchi H, Ohmura T, Suginome M. J Am Chem Soc, 2009, 131: 11298–11299

    Article  CAS  Google Scholar 

  63. Hansmann MM, Melen RL, Rudolph M, Rominger F, Wadepohl H, Stephan DW, Hashmi ASK. J Am Chem Soc, 2015, 137: 15469–15477

    Article  CAS  Google Scholar 

  64. Pitts CR, Ling B, Snyder JA, Bragg AE, Lectka T. J Am Chem Soc, 2016, 138: 6598–6609

    Article  CAS  Google Scholar 

  65. Mai S, Song Q. Angew Chem Int Ed, 2017, 56: 7952–7957

    Article  CAS  Google Scholar 

  66. Garve LKB, Jones PG, Werz DB. Angew Chem Int Ed, 2017, 56: 9226–9230

    Article  CAS  Google Scholar 

  67. Rao C, Mai S, Song Q. Chem Commun, 2018, 54: 5964–5967

    Article  CAS  Google Scholar 

  68. Guo Y, Nguyen TV, Koenigs RM. Org Lett, 2019, 21: 8814–8818

    Article  CAS  Google Scholar 

  69. Li ML, Yu JH, Li YH, Zhu SF, Zhou QL. Science, 2019, 366: 990–994

    Article  CAS  Google Scholar 

  70. Sullivan RJ, Freure GPR, Newman SG. ACS Catal, 2019, 9: 5623–5630

    Article  CAS  Google Scholar 

  71. Ge L, Wang DX, Xing R, Ma D, Walsh PJ, Feng C. Nat Commun, 2019, 10: 4367

    Article  Google Scholar 

  72. Luo W, Sun Z, Fernando EHN, Nesterov VN, Cundari TR, Wang H. ACS Catal, 2019, 9: 8285–8293

    Article  CAS  Google Scholar 

  73. Mills LR, Monteith JJ, Dos Passos Gomes G, Aspuru-Guzik A, Rousseaux SAL. J Am Chem Soc, 2020, 142: 13246–13254

    Article  CAS  Google Scholar 

  74. Augustin AU, Werz DB. Acc Chem Res, 2021, 54: 1528–1541

    Article  CAS  Google Scholar 

  75. Guo L, Noble A, Aggarwal VK. Angew Chem Int Ed, 2021, 60: 212–216

    Article  CAS  Google Scholar 

  76. Zuo Z, Daniliuc CG, Studer A. Angew Chem Int Ed, 2021, 60: 25252–25257

    Article  CAS  Google Scholar 

  77. Zhao P, Li Z, He J, Liu X, Feng X. Sci China Chem, 2021, 64: 1355–1360

    Article  CAS  Google Scholar 

  78. Muizebelt WJ, Nivard RJF. J Chem Soc B, 1968, 913

  79. Benson SW, Egger KW, Golden DM. J Am Chem Soc, 2002, 87: 468–476

    Article  Google Scholar 

  80. Dickinson RG, Lotzkar H. J Am Chem Soc, 2002, 59: 472–475

    Article  Google Scholar 

  81. Hepperle SS, Li Q, East ALL. J Phys Chem A, 2005, 109: 10975–10981

    Article  CAS  Google Scholar 

  82. Lian Y, Miller LC, Born S, Sarpong R, Davies HML. J Am Chem Soc, 2010, 132: 12422–12425

    Article  CAS  Google Scholar 

  83. Zhou L, Ma J, Zhang Y, Wang J. Tetrahedron Lett, 2011, 52: 5484–5487

    Article  CAS  Google Scholar 

  84. Harrar K, Reiser O. Chem Commun, 2012, 48: 3457–3459

    Article  CAS  Google Scholar 

  85. Bloch R, Hassan D, Mandard X. Tetrahedron Lett, 1983, 24: 4691–4694

    Article  CAS  Google Scholar 

  86. CCDC numbers 1942363, 1942345. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre

  87. Singh TP, Singh OM. MRMC, 2017, 18

  88. Rakhit A, Hurley ME, Tipnis V, Coleman J, Rommel A, Brunner HR. J Clin Pharmacol, 1986, 26: 156–164

    Article  CAS  Google Scholar 

  89. Kochanowska-Karamyan AJ, Hamann MT. Chem Rev, 2010, 110: 4489–4497

    Article  CAS  Google Scholar 

  90. Ishikura M, Abe T, Choshi T, Hibino S. Nat Prod Rep, 2013, 30: 694–752

    Article  CAS  Google Scholar 

  91. Barluenga J, Moriel P, Valdés C, Aznar F. Angew Chem Int Ed, 2007, 46: 5587–5590

    Article  CAS  Google Scholar 

  92. Zhou YG. Acc Chem Res, 2007, 40: 1357–1366

    Article  CAS  Google Scholar 

  93. Gilmore CD, Allan KM, Stoltz BM. J Am Chem Soc, 2008, 130: 1558–1559

    Article  CAS  Google Scholar 

  94. Wang DS, Chen QA, Lu SM, Zhou YG. Chem Rev, 2012, 112: 2557–2590

    Article  CAS  Google Scholar 

  95. Ascic E, Buchwald SL. J Am Chem Soc, 2015, 137: 4666–4669

    Article  CAS  Google Scholar 

  96. Panda S, Ready JM. J Am Chem Soc, 2018, 140: 13242–13252

    Article  CAS  Google Scholar 

  97. Cheng YZ, Zhao QR, Zhang X, You SL. Angew Chem Int Ed, 2019, 58: 18069–18074

    Article  CAS  Google Scholar 

  98. Zhang HJ, Gu Q, You SL. Org Lett, 2019, 21: 9420–9424

    Article  CAS  Google Scholar 

  99. Yang K, Lou Y, Wang C, Qi LW, Fang T, Zhang F, Xu H, Zhou L, Li W, Zhang G, Yu P, Song Q. Angew Chem Int Ed, 2020, 59: 3294–3299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (21772046, 21931013) and Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University. The authors also thank the Instrumental Analysis Center of Huaqiao University for analysis support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuling Song.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Information For

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Q., Wang, S., Ma, X. et al. Design, synthesis, and applications of stereospecific 1,3-diene carbonyls. Sci. China Chem. 65, 912–917 (2022). https://doi.org/10.1007/s11426-021-1204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1204-5

Keywords

Navigation