Skip to main content
Log in

Fine-tuning hydroxylamines as single-nitrogen sources for Pd(0)-catalyzed diamination of o-bromo(or chloro)-biaryls

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Transition metal-catalyzed diamination by hydroxylamines is a common approach for making three-membered aziridines, while its use for building the larger N-heterocycles is still underdeveloped. Herein, we report an efficient Pd(0)-catalyzed inter-molecular [4+1] annulation of o-bromo(or chloro)-biaryls with bifunctional secondary hydroxylamines for the one-step assembly of synthetically useful carbazoles. Noteworthily, a linchpin for this domino reaction was the judicious selection of both the amino-sources and Pd(0)-catalysts for enabling the prerequisite oxidative addition of aryl halides to Pd(0)-species in the presence of hydroxylamines with a labile N-O bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Park Y, Kim Y, Chang S. Chem Rev, 2017, 117: 9247–9301

    Article  CAS  PubMed  Google Scholar 

  2. Timsina YN, Gupton BF, Ellis KC. ACS Catal, 2018, 8: 5732–5776

    Article  CAS  Google Scholar 

  3. Shen YM, Zhao MX, Xu J, Shi Y. Angew Chem Int Ed, 2006, 45: 8005–8008

    Article  CAS  Google Scholar 

  4. Vesely J, Ibrahem I, Zhao GL, Rios R, Córdova A. Angew Chem Int Ed, 2007, 46: 778–781

    Article  CAS  Google Scholar 

  5. Pennings MLM, Reinhoudt DN. J Org Chem, 1983, 48: 4043–4048

    Article  CAS  Google Scholar 

  6. Poteat CM, Jang Y, Jung M, Johnson JD, Williams RG, Lindsay VNG. Angew Chem Int Ed, 2020, 59: 18655–18661

    Article  CAS  Google Scholar 

  7. Ma X, Farndon JJ, Young TA, Fey N, Bower JF. Angew Chem Int Ed, 2017, 56: 14531–14535

    Article  CAS  Google Scholar 

  8. Paudyal MP, Adebesin AM, Burt SR, Ess DH, Ma Z, Kürti L, Falck JR. Science, 2016, 353: 1144–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hazelden IR, Carmona RC, Langer T, Pringle PG, Bower JF. Angew Chem Int Ed, 2018, 57: 5124–5128

    Article  CAS  Google Scholar 

  10. Lebel H, Huard K, Lectard S. J Am Chem Soc, 2005, 127: 14198–14199

    Article  CAS  PubMed  Google Scholar 

  11. Liu R, Herron SR, Fleming SA. J Org Chem, 2007, 72: 5587–5591

    Article  CAS  PubMed  Google Scholar 

  12. Boralsky LA, Marston D, Grigg RD, Hershberger JC, Schomaker JM. Org Lett, 2011, 13: 1924–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Combee LA, Johnson SL, Laudenschlager JE, Hilinski MK. Org Lett, 2019, 21: 2307–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berman AM, Johnson JS. J Am Chem Soc, 2004, 126: 5680–5681

    Article  CAS  PubMed  Google Scholar 

  15. Feng C, Loh TP. Org Lett, 2014, 16: 3444–3447

    Article  CAS  PubMed  Google Scholar 

  16. Yasuhisa T, Hirano K, Miura M. Chem Lett, 2017, 46: 463–465

    Article  CAS  Google Scholar 

  17. Chen YH, Graßl S, Knochel P. Angew Chem Int Ed, 2018, 57: 1108–1111

    Article  CAS  Google Scholar 

  18. Zhou Z, Tan Y, Shen X, Ivlev S, Meggers E. Sci China Chem, 2021, 64: 452–458

    Article  CAS  Google Scholar 

  19. Ng KH, Chan ASC, Yu WY. J Am Chem Soc, 2010, 132: 12862–12864

    Article  CAS  PubMed  Google Scholar 

  20. Yoo EJ, Ma S, Mei TS, Chan KSL, Yu JQ. J Am Chem Soc, 2011, 133: 7652–7655

    Article  CAS  PubMed  Google Scholar 

  21. Ng KH, Ng FN, Yu WY. Chem Commun, 2012, 48: 11680–11682

    Article  CAS  Google Scholar 

  22. Grohmann C, Wang H, Glorius F. Org Lett, 2013, 15: 3014–3017

    Article  CAS  PubMed  Google Scholar 

  23. Patel P, Chang S. Org Lett, 2014, 16: 3328–3331

    Article  CAS  PubMed  Google Scholar 

  24. Patel P, Chang S. ACS Catal, 2015, 5: 853–858

    Article  CAS  Google Scholar 

  25. Cheng Y, Dong W, Wang H, Bolm C. Chem Eur J, 2016, 22: 10821–10824

    Article  CAS  PubMed  Google Scholar 

  26. Ramirez TA, Wang Q, Zhu Y, Zheng H, Peng X, Cornwall RG, Shi Y. Org Lett, 2013, 15: 4210–4213

    Article  CAS  PubMed  Google Scholar 

  27. Zheng H, Zhu Y, Shi Y. Angew Chem Int Ed, 2014, 53: 11280–11284

    Article  CAS  Google Scholar 

  28. Zhou B, Wu Z, Ma D, Ji X, Zhang Y. Org Lett, 2018, 20: 6440–6443

    Article  CAS  PubMed  Google Scholar 

  29. Shao C, Zhou B, Wu Z, Ji X, Zhang Y. Adv Synth Catal, 2018, 360: 887–892

    Article  CAS  Google Scholar 

  30. Kitamura M, Narasaka K. Chem Record, 2002, 2: 268–277

    Article  CAS  Google Scholar 

  31. Shuler SA, Yin G, Krause SB, Vesper CM, Watson DA. J Am Chem Soc, 2016, 138: 13830–13833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu F, Shuler SA, Watson DA. Angew Chem Int Ed, 2018, 57: 12081–12085

    Article  CAS  Google Scholar 

  33. Xu F, Korch KM, Watson DA. Angew Chem Int Ed, 2019, 58: 13448–13451

    Article  CAS  Google Scholar 

  34. Fan L, Hao J, Yu J, Ma X, Liu J, Luan X. J Am Chem Soc, 2020, 142: 6698–6707

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt AW, Reddy KR, Knölker HJ. Chem Rev, 2012, 112: 3193–3328

    Article  CAS  PubMed  Google Scholar 

  36. Jiang H, Zhang Y, Chen D, Zhou B, Zhang Y. Org Lett, 2016, 18: 2032–2035

    Article  CAS  PubMed  Google Scholar 

  37. Zhu C, Zhao Y, Wang D, Sun WY, Shi Z. Sci Rep, 2016, 6: 33131–33139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Koga Y, Kaneda T, Saito Y, Murakami K, Itami K. Science, 2018, 359: 435–439

    Article  CAS  PubMed  Google Scholar 

  39. Zhu C, Wang D, Wang D, Zhao Y, Sun WY, Shi Z. Angew Chem Int Ed, 2018, 57: 8848–8853

    Article  CAS  Google Scholar 

  40. Tan B, Liu L, Zheng H, Cheng T, Zhu D, Yang X, Luan X. Chem Sci, 2020, 11: 10198–10203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sasabe H, Kido J. Chem Mater, 2011, 23: 621–630

    Article  CAS  Google Scholar 

  42. Hartwig JF. Acc Chem Res, 2008, 41: 11–20

    Article  CAS  Google Scholar 

  43. O’Reilly M, Kirkwood NK, Kenyon EJ, Huckvale R, Cantillon DM, Waddell SJ, Ward SE, Richardson GP, Kros CJ, Derudas M. J Med Chem, 2019, 62: 5312–5329

    Article  PubMed  CAS  Google Scholar 

  44. Kim MY, Lim GJ, Lim JI, Kim DS, Kim IY, Yang JS. Heterocycles, 1997, 45: 2041–2043

    Article  CAS  Google Scholar 

  45. Wu J, Li L, Liu M, Bai L, Luan X. Angew Chem Intl Edit, 2022, 61: e202113820

    CAS  Google Scholar 

  46. Ruiz-Castillo P, Buchwald SL. Chem Rev, 2016, 116: 12564–12649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu Z, Tong X, Liu G. Org Lett, 2016, 18: 2058–2061

    Article  CAS  PubMed  Google Scholar 

  48. Okamoto K, Oda T, Kohigashi S, Ohe K. Angew Chem Int Ed, 2011, 50: 11470–11473

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21925108, 22171225).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Liu or Xinjun Luan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, P., Han, L., Bai, J. et al. Fine-tuning hydroxylamines as single-nitrogen sources for Pd(0)-catalyzed diamination of o-bromo(or chloro)-biaryls. Sci. China Chem. 65, 686–693 (2022). https://doi.org/10.1007/s11426-021-1202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1202-9

Keywords

Navigation