Skip to main content
Log in

Interfacial ion regulation on 2D layered double hydroxide nanosheets for enhanced thermal insulation

界面离子调控增强二维层状氢氧化物纳米片的隔热性能

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Exploring new strategies to broaden the upper/lower limit of thermal conductivity is of great interest to develop thermal management materials that can adapt to extreme environments. In this work, we employ an interfacial ion regulation to enhance the thermal insulation performance of 2D layered double hydroxide nanosheets. The introduction of interfacial ion enlarges the interplanar spacing of Co(OH)2 nanosheets from 4.64 to 8.05 Å, which reduces phonon scattering length perpendicular to the two-dimensional plane and leads to enhanced interlayer thermal insulation. The interfacial ion-regulated Co(OH)2 (named as Co(OH)2-Mx−) exhibits 3-fold enhancement of thermal insulation through decreasing the thermal conductivity to as low as 0.15 W m−1 K−1, which is among the top values in 2D solid materials. We anticipate that interfacial ion regulation for 2D nanosheets paves a new avenue to break through the thermal insulation limit.

摘要

探索热导率的极限对于开发适应极端环境的热管理材料具有重要意义. 在这项工作中, 我们采用界面离子调控来提高二维层状氢氧化物纳米片的隔热性能. 界面离子的引入使Co(OH)2纳米片的层间距从4.64 Å增大到8.05 Å, 从而减小了垂直于二维平面的声子散射长度, 增强了层间的隔热性能. 我们的界面离子调控策略可将Co(OH)2纳米片导热系数降低至0.15 W m-1K-1, 使其隔热性能提高了3倍. 此外界面离子调控策略将为突破二维固体材料的隔热极限开辟一条新的途径.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qian X, Zhou J, Chen G. Nat Mater, 2021, 20: 1188–1202

    Article  CAS  Google Scholar 

  2. Costescu RM, Cahill DG, Fabreguette FH, Sechrist ZA, George SM. Science, 2004, 303: 989–990

    Article  CAS  Google Scholar 

  3. Gibson QD, Zhao T, Daniels LM, Walker HC, Daou R, Hébert S, Zanella M, Dyer MS, Claridge JB, Slater B, Gaultois MW, Corà F, Alaria J, Rosseinsky MJ. Science, 2021, 373: 1017–1022

    Article  CAS  Google Scholar 

  4. Einstein A. Annalen Phys, 1911, 35: 679–694

    CAS  Google Scholar 

  5. Koley B, Lakshan A, Raghuvanshi PR, Singh C, Bhattacharya A, Jana PP. Angew Chem Int Ed, 2021, 60: 9106–9113

    Article  CAS  Google Scholar 

  6. Collins CM, Daniels LM, Gibson Q, Gaultois MW, Moran M, Feetham R, Pitcher MJ, Dyer MS, Delacotte C, Zanella M, Murray CA, Glodan G, Pérez O, Pelloquin D, Manning TD, Alaria J, Darling GR, Claridge JB, Rosseinsky MJ. Angew Chem Int Ed, 2021, 60: 16457–16465

    Article  CAS  Google Scholar 

  7. Aryana K, Stewart DA, Gaskins JT, Nag J, Read JC, Olson DH, Grobis MK, Hopkins PE. Nat Commun, 2021, 12: 2817

    Article  CAS  Google Scholar 

  8. Xu B, Feng T, Agne MT, Zhou L, Ruan X, Snyder GJ, Wu Y. Angew Chem Int Ed, 2017, 56: 3546–3551

    Article  CAS  Google Scholar 

  9. Banik A, Biswas K. Angew Chem Int Ed, 2017, 56: 14561–14566

    Article  CAS  Google Scholar 

  10. Giri A, Chen AZ, Mattoni A, Aryana K, Zhang D, Hu X, Lee SH, Choi JJ, Hopkins PE. Nano Lett, 2020, 20: 3331–3337

    Article  CAS  Google Scholar 

  11. Jo I, Pettes MT, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L. Nano Lett, 2013, 13: 550–554

    Article  CAS  Google Scholar 

  12. Chiritescu C, Cahill DG, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P. Science, 2007, 315: 351–353

    Article  CAS  Google Scholar 

  13. Maire J, Anufriev R, Yanagisawa R, Ramiere A, Volz S, Nomura M. Sci Adv, 2017, 3: e1700027

    Article  Google Scholar 

  14. Yuan W, Ueji K, Yagi T, Endo T, Lim HE, Miyata Y, Yomogida Y, Yanagi K. ACS Nano, 2021, 15: 15902–15909

    Article  CAS  Google Scholar 

  15. Jana MK, Pal K, Waghmare UV, Biswas K. Angew Chem Int Ed, 2016, 55: 7792–7796

    Article  CAS  Google Scholar 

  16. Yang J, Qian X, Pan W, Yang R, Li Z, Han Y, Zhao M, Huang M, Wan C. Adv Mater, 2019, 31: 1808222

    Article  Google Scholar 

  17. Vaziri S, Yalon E, Muñoz Rojo M, Suryavanshi SV, Zhang H, McClellan CJ, Bailey CS, Smithe KKH, Gabourie AJ, Chen V, Deshmukh S, Bendersky L, Davydov AV, Pop E. Sci Adv, 2019, 5: eaax1325

    Article  CAS  Google Scholar 

  18. Zheng X, Zhao CY, Gu X. Int J Heat Mass Transfer, 2019, 143: 118583

    Article  CAS  Google Scholar 

  19. Sood A, Xiong F, Chen S, Cheaito R, Lian F, Asheghi M, Cui Y, Donadio D, Goodson KE, Pop E. Nano Lett, 2019, 19: 2434–2442

    Article  CAS  Google Scholar 

  20. Cepellotti A, Fugallo G, Paulatto L, Lazzeri M, Mauri F, Marzari N. Nat Commun, 2015, 6: 6400

    Article  CAS  Google Scholar 

  21. Sun Z, Yuan K, Chang Z, Zhang X, Qin G, Tang D. J Appl Phys, 2019, 126: 125104

    Article  Google Scholar 

  22. Erhart P, Hyldgaard P, Lindroth DO. Chem Mater, 2015, 27: 5511–5518

    Article  CAS  Google Scholar 

  23. Wang Y, Xu N, Li D, Zhu J. Adv Funct Mater, 2017, 27: 1604134

    Article  Google Scholar 

  24. Balandin AA. Nat Mater, 2011, 10: 569–581

    Article  CAS  Google Scholar 

  25. Cammarata A, Polcar T. Phys Rev B, 2021, 103: 035406

    Article  CAS  Google Scholar 

  26. Wang FQ, Liu J, Li X, Wang Q, Kawazoe Y. Appl Phys Lett, 2017, 111: 192102

    Article  Google Scholar 

  27. Kim SE, Mujid F, Rai A, Eriksson F, Suh J, Poddar P, Ray A, Park C, Fransson E, Zhong Y, Muller DA, Erhart P, Cahill DG, Park J. Nature, 2021, 597: 660–665

    Article  CAS  Google Scholar 

  28. Wang Z, Singaravelu ASS, Dai R, Nian Q, Chawla N, Wang RY. Angew Chem Int Ed, 2020, 59: 9556–9563

    Article  CAS  Google Scholar 

  29. Hanus R, Agne MT, Rettie AJE, Chen Z, Tan G, Chung DY, Kanatzidis MG, Pei Y, Voorhees PW, Snyder GJ. Adv Mater, 2019, 31: 1900108

    Article  Google Scholar 

  30. Liu Z, Ma R, Osada M, Takada K, Sasaki T. J Am Chem Soc, 2005, 127: 13869–13874

    Article  CAS  Google Scholar 

  31. Ma R, Liu Z, Takada K, Fukuda K, Ebina Y, Bando Y, Sasaki T. Inorg Chem, 2006, 45: 3964–3969

    Article  CAS  Google Scholar 

  32. Babaei H, DeCoster ME, Jeong M, Hassan ZM, Islamoglu T, Baumgart H, McGaughey AJH, Redel E, Farha OK, Hopkins PE, Malen JA, Wilmer CE. Nat Commun, 2020, 11: 4010

    Article  CAS  Google Scholar 

  33. Liu S, Cheng H, Xu K, Ding H, Zhou J, Liu B, Chu W, Wu C, Xie Y. ACS Energy Lett, 2019, 4: 423–429

    Article  CAS  Google Scholar 

  34. Wan S, Qi J, Zhang W, Wang W, Zhang S, Liu K, Zheng H, Sun J, Wang S, Cao R. Adv Mater, 2017, 29: 1700286

    Article  Google Scholar 

  35. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA. Science, 2008, 322: 932–934

    Article  CAS  Google Scholar 

  36. Tong Z, Dumitrică T, Frauenheim T. Nano Lett, 2021, 21: 4351–4356

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2017YFA0206702), the National Natural Science Foundation of China (21925110, 21890751, 91745113), the China Postdoctoral Science Foundation (2019TQ0299), the Fundamental Research Funds for the Central Universities (WK 2060190084), the Natural Science Foundation of China (U1832168), the Anhui Provincial Natural Science Foundation (1808085MB26) and the Fundamental Research Funds for the Central Universities (WK5290000001) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB36000000) and China National Postdoctoral Program for Innovative Talents (BX2021283). The authors thank Dr. Jie Tian and Dr. Huijuan Wang at Engineering and Materials Science Experiment Centre for the help of HRTEM experiments. The authors also appreciate the support from the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzheng Wu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Xu, H., Cheng, H. et al. Interfacial ion regulation on 2D layered double hydroxide nanosheets for enhanced thermal insulation. Sci. China Chem. 65, 898–904 (2022). https://doi.org/10.1007/s11426-021-1201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1201-0

Keywords

关键词

Navigation