Skip to main content
Log in

Apoptosis-enhanced ferroptosis therapy of pancreatic carcinoma through PAMAM dendrimer-iron(III) complex-based plasmid delivery

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of promising strategies to improve the treatment efficacy of pancreatic carcinoma still remains to be a challenging task. We report here the development of a new dendrimer-based nanomedicine formulation to tackle pancreatic carcinoma through apoptosis-enhanced ferroptosis therapy. In this article, G5 dendrimers were partially modified with a Fe(III) chelator hydroxyquinoline-2-carboxylic acid (8-HQC) on their periphery, entrapped with gold nanoparticles (Au NPs) within their internal cavities, and chelated with Fe(III). The thus created dendrimer-entrapped Au NPs (Fe-Au DENP-HQC) with an Au core size of 1.9 nm and 20.0 Fe(III) ions complexed per dendrimer are stable, have a pH-dependent Fe(III) release profile, and can generate reactive oxygen species under the tumor microenvironment (TME) and effectively compact plasmid DNA encoding p53 protein to form polyplexes with a hydrodynamic size of 143.9 nm and a surface potential of 33.6 mV. We show that cancer cells treated with the created Fe-Au DENP-HQC/p53 polyplexes can be more significantly inhibited through vector-mediated chemodynamic therapy (CDT) effect via Fe(III)-induced Fenton reaction and the p53 gene delivery-boosted cell apoptosis and oxidative stress in the TME than single-mode CDT and gene therapy. Further investigations using a xenografted tumor model validated the effectiveness of apoptosis-enhanced ferropotosis therapy through the downregulation of GPX-4 and SLC7A11 proteins, upregulation of p53 and PTEN proteins, as well as histological examinations. Meanwhile, the dendrimer nanoplatform enabled tumor fluorescence imaging through gene delivery-mediated enhanced green fluorescent protein expression. The Fe(III)-complexed dendrimer vector system may be developed as a promising theranostic nanoplatform for ferroptosis or ferroptosis-based combination therapy of other cancer types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O, Bray F. Eur J Cancer, 2018, 103: 356–387

    Article  CAS  PubMed  Google Scholar 

  2. Ryan DP, Hong TS, Bardeesy N. N Engl J Med, 2014, 371: 1039–1049

    Article  CAS  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Fuchs HE, Jemal A. CA Cancer J Clin, 2021, 71: 7–33

    Article  PubMed  Google Scholar 

  4. Hidalgo M. N Engl J Med, 2010, 362: 1605–1617

    Article  CAS  PubMed  Google Scholar 

  5. Zalatnai A, Molnar Z. In Vivo, 2007, 21: 339–347

    CAS  PubMed  Google Scholar 

  6. Fink SL, Cookson BT. Infect Immun, 2005, 73: 1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bialik S, Dasari SK, Kimchi A. J Cell Sci, 2018, 131: jcs215152

    Article  PubMed  CAS  Google Scholar 

  8. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison III B, Stockwell BR. Cell, 2012, 149: 1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang D, Kroemer G. Curr Biol, 2020, 30: R1292–R1297

    Article  CAS  PubMed  Google Scholar 

  10. Lo M, Ling V, Wang YZ, Gout PW. Br J Cancer, 2008, 99: 464–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD. Cell, 2017, 171: 273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Trends Biochem Sci, 2016, 41: 274–286

    Article  CAS  PubMed  Google Scholar 

  13. Zhang K, Xu H, Jia X, Chen Y, Ma M, Sun L, Chen H. ACS Nano, 2016, 10: 10816–10828

    Article  CAS  PubMed  Google Scholar 

  14. Aghevlian S, Cai Z, Lu Y, Hedley DW, Winnik MA, Reilly RM. Mol Pharmaceutics, 2019, 16: 768–778

    Article  CAS  Google Scholar 

  15. Aghevlian S, Cai Z, Hedley D, Winnik MA, Reilly RM. EJNMMI Radiopharm Chem, 2020, 5: 22

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lopez-Lazaro M. Cancer Lett, 2007, 252: 1–8

    Article  CAS  PubMed  Google Scholar 

  17. Levine AJ. Cell, 1997, 88: 323–331

    Article  CAS  PubMed  Google Scholar 

  18. Bieging KT, Mello SS, Attardi LD. Nat Rev Cancer, 2014, 14: 359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W. Nature, 2015, 520: 57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koppula P, Zhuang L, Gan B. Protein Cell, 2021, 12: 599–620

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Yu C, Kang R, Kroemer G, Tang D. Cell Death Differ, 2021, 28: 1135–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li D, Lin L, Fan Y, Liu L, Shen M, Wu R, Du L, Shi X. Bioactive Mater, 2021, 6: 729–739

    Article  CAS  Google Scholar 

  23. He H, Li Y, Jia XR, Du J, Ying X, Lu WL, Lou JN, Wei Y. Biomaterials, 2011, 32: 478–487

    Article  CAS  PubMed  Google Scholar 

  24. Xiao T, Li D, Shi X, Shen M. Macromol Biosci, 2020, 20: 1900282

    Article  CAS  Google Scholar 

  25. Xiong Z, Shen M, Shi X. Sci China Mater, 2018, 61: 1387–1403

    Article  CAS  Google Scholar 

  26. Zhu J, Zhao L, Yang J, Chen L, Shi J, Zhao J, Shi X. Langmuir, 2019, 35: 13405–13412

    Article  CAS  PubMed  Google Scholar 

  27. Shan Y, Luo T, Peng C, Sheng R, Cao A, Cao X, Shen M, Guo R, Tomás H, Shi X. Biomaterials, 2012, 33: 3025–3035

    Article  CAS  PubMed  Google Scholar 

  28. Navarro G, Tros de Ilarduya C. Nanomed-Nanotechnol Biol Med, 2009, 5: 287–297

    Article  CAS  Google Scholar 

  29. Hou W, Wei P, Kong L, Guo R, Wang S, Shi X. J Mater Chem B, 2016, 4: 2933–2943

    Article  CAS  PubMed  Google Scholar 

  30. Gao Y, Ouyang Z, Yang C, Song C, Jiang C, Song S, Shen M, Shi X. Adv Healthcare Mater, 2021, 10: 2100833

    Article  CAS  Google Scholar 

  31. Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Drug Des, Dev Ther, 2013, 7: 1157–1178

    Article  Google Scholar 

  32. Leanderson P, Tagesson C. Curr Alzheimer Rescinogenesis, 1996, 17: 545–550

    CAS  Google Scholar 

  33. Jonas SK, Riley PA. Free Radical Res Commun, 1992, 17: 407–418

    Article  CAS  Google Scholar 

  34. Jonas SK, Riley PA. Cell Biochem Funct, 1991, 9: 245–253

    Article  CAS  PubMed  Google Scholar 

  35. Pesek J, Svoboda J, Sattler M, Bartram S, Boland W. Org Biomol Chem, 2015, 13: 178–184

    Article  CAS  PubMed  Google Scholar 

  36. Wang SH, Luo J, Zhang ZH, Dong D, Shen Y, Fang Y, Hu L, Liu M, Dai C, Peng S, Fang Z, Shang P. Am J Cancer Res, 2018, 8: 1933–1946

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuang F, Liu J, Tang D, Kang R. Front Cell Dev Biol, 2020, 8: 586578

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Cell Death Differ, 2016, 23: 369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hosein AN, Brekken RA, Maitra A. Nat Rev Gastroenterol Hepatol, 2020, 17: 487–505

    Article  PubMed  PubMed Central  Google Scholar 

  40. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Science, 1989, 246: 1306–1309

    Article  CAS  PubMed  Google Scholar 

  41. Seo Y, Baba H, Fukuda T, Takashima M, Sugimachi K. Cancer, 2000, 88: 2239–2245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81761148028, 21773026), the Science and Technology Commission of Shanghai Municipality (19XD1400100, 20520710300, 21490711500, 20DZ2254900) and the Shanghai Education Commission through the Shanghai Leading Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyang Shi or Mingwu Shen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2021_1191_MOESM1_ESM.docx

Apoptosis-Enhanced Ferroptosis Therapy of Pancreatic Carcinoma through PAMAM Dendrimer-Iron(III) Complex-Based Plasmid Delivery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Gao, Y., Ouyang, Z. et al. Apoptosis-enhanced ferroptosis therapy of pancreatic carcinoma through PAMAM dendrimer-iron(III) complex-based plasmid delivery. Sci. China Chem. 65, 778–788 (2022). https://doi.org/10.1007/s11426-021-1191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1191-3

Keywords

Navigation