Skip to main content
Log in

Accelerated kinetics of alkaline hydrogen evolution/oxidation reactions on dispersed ruthenium sites through N and S dual coordination

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Efficient, robust and cost-effective electrocatalysts that catalyze hydrogen evolution/oxidation reaction (HER/HOR) in alkaline media are highly demanded. Recently, single-atom catalysts (SACs) have emerged as new promising candidates; however, the rational design of supports and the optimization of coordination environment between supports and metal atoms are challenging. In this work, we successfully fabricate atomically dispersed ruthenium (Ru) species, which are strongly coordinated by N and S dual heteroatoms on holey graphene (RuSA/NSG), as an excellent bifunctional catalyst for HER/HOR. In alkaline media, the developed catalyst exhibits high catalytic performance with a low overpotential of 57.3 mV to drive a current density of 10 mA cm−1 for HER, and its mass activity is about 5.8 times higher than that of commercial Pt/C and Ru/C catalysts at an overpotential of 100 mV. Similarly, considerable HOR performance of RuSA/NSG is verified to be superior to Pt/C and Ru/C. Furthermore, X-ray-based spectroscopy measurements and density-functional theory calculations have confirmed that, compared with Ru-N4, the tailored Ru-N4-S2 with nearby S dopants can act as more active centers to greatly accelerate the sluggish HER/HOR kinetics in alkaline media. The present work provides a new atomic-level engineering strategy to modulate catalytic activities of SACs via the coordination design using dual heteroatoms on the carbon support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang T, Xie H, Chen M, D’Aloia A, Cho J, Wu G, Li Q. Nano Energy, 2017, 42: 69–89

    Article  Google Scholar 

  2. Zhao G, Chen J, Sun W, Pan H. Adv Funct Mater, 2021, 31: 2010633

    Article  CAS  Google Scholar 

  3. Chen P, Hu X. Adv Energy Mater, 2020, 10: 2002285

    Article  CAS  Google Scholar 

  4. Merle G, Wessling M, Nijmeijer K. J Membrane Sci, 2011, 377: 1–35

    Article  CAS  Google Scholar 

  5. Ramaswamy N, Mukerjee S. Chem Rev, 2019, 119: 11945–11979

    Article  CAS  PubMed  Google Scholar 

  6. Li Q, Peng H, Wang Y, Xiao L, Lu J, Zhuang L. Angew Chem Int Ed, 2019, 58: 1442–1446

    Article  CAS  Google Scholar 

  7. Tian X, Zhao P, Sheng W. Adv Mater, 2019, 31: 1808066

    Article  Google Scholar 

  8. Luo W, Wang Y, Cheng C. Mater Today Phys, 2020, 15: 100274

    Article  Google Scholar 

  9. Yu J, He Q, Yang G, Zhou W, Shao Z, Ni M. ACS Catal, 2019, 9: 9973–10011

    Article  CAS  Google Scholar 

  10. Zhang Z, Li P, Wang Q, Feng Q, Tao Y, Xu J, Jiang C, Lu X, Fan J, Gu M, Li H, Wang H. J Mater Chem A, 2019, 7: 2780–2786

    Article  CAS  Google Scholar 

  11. Li Y, Abbott J, Sun Y, Sun J, Du Y, Han X, Wu G, Xu P. Appl Catal B-Environ, 2019, 258: 117952

    Article  CAS  Google Scholar 

  12. Zhang Z, Jiang C, Li P, Yao K, Zhao Z, Fan J, Li H, Wang H. Small, 2021, 17: 2007333

    Article  CAS  Google Scholar 

  13. Zhao Y, Wang X, Cheng G, Luo W. ACS Catal, 2020, 10: 11751–11757

    Article  CAS  Google Scholar 

  14. Zhang H, Zhou W, Lu XF, Chen T, Lou XWD. Adv Energy Mater, 2020, 10: 2000882

    Article  CAS  Google Scholar 

  15. Ramalingam V, Varadhan P, Fu HC, Kim H, Zhang D, Chen S, Song L, Ma D, Wang Y, Alshareef HN, He JH. Adv Mater, 2019, 31: 1903841

    Article  CAS  Google Scholar 

  16. Xu J, Zhang C, Liu H, Sun J, Xie R, Qiu Y, Lü F, Liu Y, Zhuo L, Liu X, Luo J. Nano Energy, 2020, 70: 104529

    Article  CAS  Google Scholar 

  17. Liu W, Xu Q, Yan P, Chen J, Du Y, Chu S, Wang J. ChemCatChem, 2018, 10: 946–950

    Article  CAS  Google Scholar 

  18. Guan Y, Feng Y, Wan J, Yang X, Fang L, Gu X, Liu R, Huang Z, Li J, Luo J, Li C, Wang Y. Small, 2018, 14: 1800697

    Article  Google Scholar 

  19. Feng Y, Guan Y, Zhang H, Huang Z, Li J, Jiang Z, Gu X, Wang Y. J Mater Chem A, 2018, 6: 11783–11789

    Article  CAS  Google Scholar 

  20. Li T, Liu J, Song Y, Wang F. ACS Catal, 2018, 8: 8450–8458

    Article  CAS  Google Scholar 

  21. Lai WH, Zhang LF, Hua WB, Indris S, Yan ZC, Hu Z, Zhang B, Liu Y, Wang L, Liu M, Liu R, Wang YX, Wang JZ, Hu Z, Liu HK, Chou SL, Dou SX. Angew Chem Int Ed, 2019, 58: 11868–11873

    Article  CAS  Google Scholar 

  22. Yuan S, Pu Z, Zhou H, Yu J, Amiinu IS, Zhu J, Liang Q, Yang J, He D, Hu Z, Van Tendeloo G, Mu S. Nano Energy, 2019, 59: 472–480

    Article  CAS  Google Scholar 

  23. Zhou H, Hong S, Zhang H, Chen Y, Xu H, Wang X, Jiang Z, Chen S, Liu Y. Appl Catal B-Environ, 2019, 256: 117767

    Article  Google Scholar 

  24. Zhang T, Wang P, Chen H, Pei P. Appl Energy, 2018, 223: 249–262

    Article  Google Scholar 

  25. Samad S, Loh KS, Wong WY, Lee TK, Sunarso J, Chong ST, Wan Daud WR. Int J Hydrogen Energy, 2018, 43: 7823–7854

    Article  CAS  Google Scholar 

  26. Gebauer C, Jusys Z, Behm RJ. J Electrochem Soc, 2018, 165: J3342–J3349

    Article  CAS  Google Scholar 

  27. Lokhande AC, Qattan IA, Lokhande CD, Patole SP. Mater Chem A, 2020, 8: 918–977

    Article  CAS  Google Scholar 

  28. Qin L, Ding R, Wang H, Wu J, Wang C, Zhang C, Xu Y, Wang L, Lv B. Nano Res, 2017, 10: 305–319

    Article  CAS  Google Scholar 

  29. Wang Y, Zheng X, Wang D. Nano Res, 2021, 14: doi:https://doi.org/10.1007/s12274-021-3794-0

  30. Yang J, Li WH, Tan S, Xu K, Wang Y, Wang D, Li Y. Angew Chem Int Ed, 2021, 60: 19085–19091

    Article  CAS  Google Scholar 

  31. Tang T, Ding L, Jiang Z, Hu JS, Wan LJ. Sci China Chem, 2020, 63: 1517–1542

    Article  CAS  Google Scholar 

  32. Cheng H, Gui R, Liu S, Xie Y, Wu C. Sci China Chem, 2020, 63: 1543–1556

    Article  CAS  Google Scholar 

  33. Cheng N, Zhang L, Doyle-Davis K, Sun X. Electrochem Energ Rev, 2019, 2: 539–573

    Article  Google Scholar 

  34. Zhang Q, Guan J. Adv Funct Mater, 2020, 30: 2000768

    Article  CAS  Google Scholar 

  35. Fei H, Dong J, Chen D, Hu T, Duan X, Shakir I, Huang Y, Duan X. Chem Soc Rev, 2019, 48: 5207–5241

    Article  CAS  PubMed  Google Scholar 

  36. Hou Y, Qiu M, Kim MG, Liu P, Nam G, Zhang T, Zhuang X, Yang B, Cho J, Chen M, Yuan C, Lei L, Feng X. Nat Commun, 2019, 10: 1392

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang Z, Zhao X, Xi S, Zhang L, Chen Z, Zeng Z, Huang M, Yang H, Liu B, Pennycook SJ, Chen P. Adv Energy Mater, 2020, 10: 2002896

    Article  CAS  Google Scholar 

  38. Li Q, Chen W, Xiao H, Gong Y, Li Z, Zheng L, Zheng X, Yan W, Cheong WC, Shen R, Fu N, Gu L, Zhuang Z, Chen C, Wang D, Peng Q, Li J, Li Y. Adv Mater, 2018, 30: 1800588

    Article  Google Scholar 

  39. Zhang J, Zhao Y, Chen C, Huang YC, Dong CL, Chen CJ, Liu RS, Wang C, Yan K, Li Y, Wang G. J Am Chem Soc, 2019, 141: 20118–20126

    Article  CAS  PubMed  Google Scholar 

  40. Su Y, Zhang Y, Zhuang X, Li S, Wu D, Zhang F, Feng X. Carbon, 2013, 62: 296–301

    Article  CAS  Google Scholar 

  41. Geng Z, Liu Y, Kong X, Li P, Li K, Liu Z, Du J, Shu M, Si R, Zeng J. Adv Mater, 2018, 30: 1803498

    Article  Google Scholar 

  42. Zhang C, Sha J, Fei H, Liu M, Yazdi S, Zhang J, Zhong Q, Zou X, Zhao N, Yu H, Jiang Z, Ringe E, Yakobson BI, Dong J, Chen D, Tour JM. ACS Nano, 2017, 11: 6930–6941

    Article  CAS  PubMed  Google Scholar 

  43. Tao H, Choi C, Ding LX, Jiang Z, Han Z, Jia M, Fan Q, Gao Y, Wang H, Robertson AW, Hong S, Jung Y, Liu S, Sun Z. Chem, 2019, 5: 204–214

    Article  CAS  Google Scholar 

  44. Bai L, Duan Z, Wen X, Si R, Zhang Q, Guan J. ACS Catal, 2019, 9: 9897–9904

    Article  CAS  Google Scholar 

  45. Fang Y, Sun D, Niu S, Cai J, Zang Y, Wu Y, Zhu L, Xie Y, Liu Y, Zhu Z, Mosallanezhad A, Niu D, Lu Z, Shi J, Liu X, Rao D, Wang G, Qian Y. Sci China Chem, 2020, 63: 1563–1569

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Center for Computational Science and Engineering at Southern University of Science and Technology. This work was financially supported by the National Key Research and Development Program of China (2018YFB1502503), Guangdong Provincial Key Laboratory of Energy Materials for Electric Power (2018B030322001), Shenzhen Key Laboratory Project (ZDSYS201603311013489), Shenzhen Science and Technology Projects for Sustainable Development (KCXFZ202002011010317), the Foundation Research Project of Shenzhen (JCYJ20200109141216566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2021_1190_MOESM1_ESM.docx

Accelerated kinetics of alkaline hydrogen evolution/oxidation reactions on dispersed ruthenium sites through N and S dual coordination

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ni, L., Liu, H. et al. Accelerated kinetics of alkaline hydrogen evolution/oxidation reactions on dispersed ruthenium sites through N and S dual coordination. Sci. China Chem. 65, 611–618 (2022). https://doi.org/10.1007/s11426-021-1190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1190-7

Navigation