Skip to main content
Log in

A boryl-migratory semipinacol rearrangement

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The semipinacol rearrangement is one of the classic yet useful synthetic tools in organic synthesis. However, semipinacol rearrangements involving heteroatom-migration are rare. Reported herein is a boryl-migratory semipinacol rearrangement of α-hydroxyallylboronates and α-hydroxypropargylboronates triggered by diverse halogen-, oxygen-, sulfur- and selenium-containing electrophiles. The protocol leads to a mild and facile access to organoborons bearing valuable functionalities. The σ (C—B) hyperconjugation is believed to be the key factor that leads to the observed exclusive chemoselectivity and enhanced reactivity. Synthetic utilities of the formed products were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song ZL, Fan CA, Tu YQ. Chem Rev, 2011, 111: 7523–7556

    Article  CAS  PubMed  Google Scholar 

  2. Wang B, Tu YQ. Acc Chem Res, 2011, 44: 1207–1222

    Article  CAS  PubMed  Google Scholar 

  3. Wang S-H, Tu Y-Q, Tang M. The semipinacol rearrangements. In: Knochel P, Molander GA, Eds. Comprehensive Organic Synthesis. 2nd Ed. Amsterdam: Elsevier, 2014. 795–852

    Google Scholar 

  4. Nakamura K, Osamura Y. J Am Chem Soc, 1993, 115: 9112–9120

    Article  CAS  Google Scholar 

  5. Shubin VG. Rearrangements of carbocations by 1,2-shifts. In: Rees Ch, Ed. Contemporary Problems in Carbonium Ion Chemistry I/II. Topics in Current Chemistry. Berlin, Heidelberg: Springer, 1984. 267–341

    Google Scholar 

  6. Winstein S, Lindegren CR, Marshall H, Ingraham LL. J Am Chem Soc, 1953, 75: 147–155

    Article  CAS  Google Scholar 

  7. Billamboz M, Banaszak E, Rigo B. ChemistrySelect, 2018, 3: 10236–10243

    Article  CAS  Google Scholar 

  8. Gutiérrez-Bonet Á, Flores-Gaspar A, Martin R. J Am Chem Soc, 2013, 135: 12576–12579

    Article  PubMed  CAS  Google Scholar 

  9. Stopka T, Schröder S, Maulide N, Niggemann M. Tetrahedron, 2020, 76: 131460

    Article  CAS  Google Scholar 

  10. Robiette R, Fang GY, Harvey JN, Aggarwal VK. Chem Commun, 2006, 741

  11. Rooke DA, Ferreira EM. J Am Chem Soc, 2010, 132: 11926–11928

    Article  CAS  PubMed  Google Scholar 

  12. Barczak NT, Rooke DA, Menard ZA, Ferreira EM. Angew Chem Int Ed, 2013, 52: 7579–7582

    Article  CAS  Google Scholar 

  13. Tan DH, Cai YH, Zeng YF, Lv WX, Yang L, Li Q, Wang H. Angew Chem Int Ed, 2019, 58: 13784–13788

    Article  CAS  Google Scholar 

  14. Lv WX, Zeng YF, Li Q, Chen Y, Tan DH, Yang L, Wang H. Angew Chem Int Ed, 2016, 55: 10069–10073

    Article  CAS  Google Scholar 

  15. Zeng YF, Ji WW, Lv WX, Chen Y, Tan DH, Li Q, Wang H. Angew Chem Int Ed, 2017, 56: 14707–14711

    Article  CAS  Google Scholar 

  16. Lv WX, Li Q, Li JL, Li Z, Lin E, Tan DH, Cai YH, Fan WX, Wang H. Angew Chem Int Ed, 2018, 57: 16544–16548

    Article  CAS  Google Scholar 

  17. Yang L, Tan DH, Fan WX, Liu XG, Wu JQ, Huang ZS, Li Q, Wang H. Angew Chem Int Ed, 2021, 60: 3454–3458

    Article  CAS  Google Scholar 

  18. Zeng YF, Liu XG, Tan DH, Fan WX, Li YN, Guo Y, Wang H. Chem Commun, 2020, 56: 4332–4335

    Article  CAS  Google Scholar 

  19. Wierschke SG, Chandrasekhar J, Jorgensen WL. J Am Chem Soc, 1985, 107: 1496–1500

    Article  CAS  Google Scholar 

  20. Lambert JB, Zhao Y, Emblidge RW, Salvador LA, Liu X, So JH, Chelius EC. Acc Chem Res, 1999, 32: 183–190

    Article  CAS  Google Scholar 

  21. Beļaunieks R, Puriņš M, Turks M. Synthesis, 2020, 52: 2147–2161

    Article  CAS  Google Scholar 

  22. Dai W, Geib SJ, Curran DP. J Am Chem Soc, 2019, 141: 12355–12361

    Article  CAS  PubMed  Google Scholar 

  23. Yamashita M, Suzuki Y, Segawa Y, Nozaki K. JAm Chem Soc, 2007, 129: 9570–9571

    Article  CAS  Google Scholar 

  24. Molander GA, Raushel J, Ellis NM. J Org Chem, 2010, 75: 4304–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He Z, Trinchera P, Adachi S, St. Denis JD, Yudin AK. Angew Chem Int Ed, 2012, 51: 11092–11096

    Article  CAS  Google Scholar 

  26. Scharnagl FK, Bose SK, Marder TB. Org Biomol Chem, 2017, 15: 1738–1752

    Article  CAS  PubMed  Google Scholar 

  27. Taguchi J, Ikeda T, Takahashi R, Sasaki I, Ogasawara Y, Dairi T, Kato N, Yamamoto Y, Bode JW, Ito H. Angew Chem Int Ed, 2017, 56: 13847–13851

    Article  CAS  Google Scholar 

  28. Lepage ML, Lai S, Peressin N, Hadjerci R, Patrick BO, Perrin DM. Angew Chem Int Ed, 2017, 56: 15257–15261

    Article  CAS  Google Scholar 

  29. Wu D, Taguchi J, Tanriver M, Bode JW. Angew Chem Int Ed, 2020, 59: 16847–16858

    Article  CAS  Google Scholar 

  30. Šterman A, Sosič I, Gobec S, Časar Z. ACS Omega, 2020, 5: 17868–17875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cheng LJ, Zhao S, Mankad NP. Angew Chem, 2021, 133: 2122–2126

    Article  Google Scholar 

  32. Schuhmacher A, Ryan SJ, Bode JW. Angew Chem Int Ed, 2021, 60: 3918–3922

    Article  CAS  Google Scholar 

  33. Ivon YM, Mazurenko IV, Kuchkovska YO, Voitenko ZV, Grygorenko OO. Angew Chem Int Ed, 2020, 59: 18016–18022

    Article  CAS  Google Scholar 

  34. Kisu H, Sakaino H, Ito F, Yamashita M, Nozaki K. J Am Chem Soc, 2016, 138: 3548–3552

    Article  CAS  PubMed  Google Scholar 

  35. Jana K, Bhunia A, Studer A. Chem, 2020, 6: 512–522

    Article  CAS  Google Scholar 

  36. Wang D, Mück-Lichtenfeld C, Studer A. J Am Chem Soc, 2020, 142: 9119–9123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee CF, Diaz DB, Holownia A, Kaldas SJ, Liew SK, Garrett GE, Dudding T, Yudin AK. Nat Chem, 2018, 10: 1062–1070

    Article  CAS  PubMed  Google Scholar 

  38. He Z, Yudin AK. J Am Chem Soc, 2011, 133: 13770–13773

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Burke MD. J Am Chem Soc, 2011, 133: 13774–13777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shiroodi RK, Koleda O, Gevorgyan V. J Am Chem Soc, 2014, 136: 13146–13149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shono T, Fujita K, Kumai S, Watanabe T, Nishiguchi I. Tetrahedron Lett, 1972, 13: 3249–3252

    Article  Google Scholar 

  42. Shimazaki M, Hara H, Suzuki K. Tetrahedron Lett, 1989, 30: 5443–5446

    Article  CAS  Google Scholar 

  43. Zang W, Wei Y, Shi M. Org Lett, 2020, 22: 5466–5472

    Article  CAS  PubMed  Google Scholar 

  44. Nakamura K, Osamura Y. Tetrahedron Lett, 1990, 31: 251–254

    Article  CAS  Google Scholar 

  45. Snape TJ. Chem Soc Rev, 2007, 36: 1823–1842

    Article  CAS  PubMed  Google Scholar 

  46. Bégué JP, Bonnet-Delpon D, Crousse B. Synlett, 2004, 18–29

  47. Vincenzi M, Mercurio FA, Leone M. Curr Protein Pept Sci, 2019, 20: 425–451

    Article  CAS  PubMed  Google Scholar 

  48. Ansorge A, Brauer DJ, Bürger H, Hagen T, Pawelke G. J Organomet Chem, 1993, 444: 5–14

    Article  CAS  Google Scholar 

  49. Deloux L, Skrzypczak-Jankun E, Cheesman BV, Srebnik M, Sabat M. J Am Chem Soc, 1994, 116: 10302–10303

    Article  CAS  Google Scholar 

  50. Zhu D, Ding TM, Luo HY, Ke H, Chen ZM. Org Lett, 2020, 22: 7699–7703

    Article  CAS  PubMed  Google Scholar 

  51. Wu P, Wu K, Wang L, Yu Z. Org Lett, 2017, 19: 5450–5453

    Article  CAS  PubMed  Google Scholar 

  52. Gillis EP, Burke MD. J Am Chem Soc, 2007, 129: 6716–6717

    Article  CAS  PubMed  Google Scholar 

  53. Li J, Ballmer SG, Gillis EP, Fujii S, Schmidt MJ, Palazzolo AME, Lehmann JW, Morehouse GF, Burke MD. Science, 2015, 347: 1221–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li J, Grillo AS, Burke MD. Acc Chem Res, 2015, 48: 2297–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lehmann JW, Blair DJ, Burke MD. Nat Rev Chem, 2018, 2: 0115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sadhukhan S, Baire B. Chem Eur J, 2019, 25: 9816–9820

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22022114, 21971261), the Key Project of Chinese National Programs for Fundamental Research and Development (2016YFA0602900), the Guang-dong Basic and Applied Basic Research Foundation (2020A1515010624), the Fundamental Research Funds for the Central Universities (20ykzd12), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01Y093), and the China Postdoctoral Science Foundation (2021M69360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honggen Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, DH., Chen, ZH., Yang, L. et al. A boryl-migratory semipinacol rearrangement. Sci. China Chem. 65, 746–752 (2022). https://doi.org/10.1007/s11426-021-1188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1188-x

Keywords

Navigation