Skip to main content
Log in

Progress and perspectives for engineering and recognizing active sites of two-dimensional materials in CO2 electroreduction

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Carbon dioxide electroreduction usually suffers from low catalytic activities and debatable reaction mechanisms at present. That may be primarily ascribed to the high energy barrier for carbon dioxide activation over the conventionally fabricated catalysts and the infeasibility of traditional characterization techniques for unveiling the evolution of active sites and reactive intermediates. Two-dimensional (2D) materials, which possess the active sites with high proportion, high activity and high uniformity, can act as ideal models to manipulate the active sites and understand structure-property relationship. In this review, we overview the boosted carbon dioxide activation by the intrinsic peculiar electronic states of 2D catalysts and the charge localization effect induced by chemical modification of two-dimensional catalysts. We also summarize the recognition of the structural evolutions for active sites in two-dimensional catalysts by means of in situ X-ray diffraction pattern and in situ X-ray absorption spectroscopy. Moreover, we emphasize the detection of the reactive intermediates on active sites in two-dimensional catalysts via in situ Raman spectroscopy and in situ Fourier transform infrared spectroscopy. Finally, we end this review with an outlook on the unresolved issues and future development of carbon dioxide electroreduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun Z, Ma T, Tao H, Fan Q, Han B. Chem, 2017, 3: 560–587

    Article  CAS  Google Scholar 

  2. Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, Luderer G, Raupach MR, Schaeffer M, van Vuuren DP, Le Quéré C. Nat Geosci, 2014, 7: 709–715

    Article  CAS  Google Scholar 

  3. Costentin C, Robert M, Savéant JM. Chem Soc Rev, 2013, 42: 2423–2436

    Article  CAS  PubMed  Google Scholar 

  4. Qiao J, Liu Y, Hong F, Zhang J. Chem Soc Rev, 2014, 43: 631–675

    Article  CAS  PubMed  Google Scholar 

  5. Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, Pérez-Ramírez J. Energy Environ Sci, 2013, 6: 3112–3135

    Article  CAS  Google Scholar 

  6. Janáky C, Hursán D, Endrődi B, Chanmanee W, Roy D, Liu D, de Tacconi NR, Dennis BH, Rajeshwar K. ACS Energy Lett, 2016, 1: 332–338

    Article  Google Scholar 

  7. Kumaravel V, Bartlett J, Pillai SC. ACS Energy Lett, 2020, 5: 486–519

    Article  CAS  Google Scholar 

  8. Hosseini ST, Raissi H, Pakdel M. New J Chem, 2020, 44: 7771–7779

    Article  CAS  Google Scholar 

  9. Sheng W, Kattel S, Yao S, Yan B, Liang Z, Hawxhurst CJ, Wu Q, Chen JG. Energy Environ Sci, 2017, 10: 1180–1185

    Article  CAS  Google Scholar 

  10. Eilert A, Cavalca F, Roberts FS, Osterwalder J, Liu C, Favaro M, Crumlin EJ, Ogasawara H, Friebel D, Pettersson LGM, Nilsson A. J Phys Chem Lett, 2017, 8: 285–290

    Article  CAS  PubMed  Google Scholar 

  11. Fan K, Zou H, Lu Y, Chen H, Li F, Liu J, Sun L, Tong L, Toney MF, Sui M, Yu J. ACS Nano, 2018, 12: 12369–12379

    Article  CAS  PubMed  Google Scholar 

  12. Choi YW, Scholten F, Sinev I, Roldan Cuenya B. J Am Chem Soc, 2019, 141: 5261–5266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu L, Zhang Y, Han W. New J Chem, 2019, 43: 3269–3272

    Article  CAS  Google Scholar 

  14. Li Q, Fu J, Zhu W, Chen Z, Shen B, Wu L, Xi Z, Wang T, Lu G, Zhu JJ, Sun S. J Am Chem Soc, 2017, 139: 4290–4293

    Article  CAS  PubMed  Google Scholar 

  15. Li CW, Kanan MW. J Am Chem Soc, 2012, 134: 7231–7234

    Article  CAS  PubMed  Google Scholar 

  16. Asadi M, Kim K, Liu C, Addepalli AV, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato JM, Haasch R, Zapol P, Kumar B, Klie RF, Abiade J, Curtiss LA, Salehi-Khojin A. Science, 2016, 353: 467–470

    Article  CAS  PubMed  Google Scholar 

  17. Zhu Q, Ma J, Kang X, Sun X, Hu J, Yang G, Han B. Sci China Chem, 2016, 59: 551–556

    Article  CAS  Google Scholar 

  18. Li L, Li Q, Li X, Wang S, Zheng K, Zuo M, Zu X, Zhao Y, Yan W, Zhu J, Sun Y, Xie Y. Sci China Chem, 2022, 65: 106–113

    Article  CAS  Google Scholar 

  19. Ren X, Liu S, Li H, Ding J, Liu L, Kuang Z, Li L, Yang H, Bai F, Huang Y, Zhang T, Liu B. Sci China Chem, 2020, 63: 1727–1733

    Article  CAS  Google Scholar 

  20. Sun Y, Gao S, Lei F, Xie Y. Chem Soc Rev, 2015, 44: 623–636

    Article  CAS  PubMed  Google Scholar 

  21. Jiao X, Zheng K, Liang L, Li X, Sun Y, Xie Y. Chem Soc Rev, 2020, 49: 6592–6604

    Article  CAS  PubMed  Google Scholar 

  22. Tekalgne MA, Do HH, Hasani A, Van Le Q, Jang HW, Ahn SH, Kim SY. Mater Today Adv, 2020, 5: 100038

    Article  Google Scholar 

  23. Wang L, Chen W, Zhang D, Du Y, Amal R, Qiao S, Wu J, Yin Z. Chem Soc Rev, 2019, 48: 5310–5349

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Li L, Guo SX, Zhang X, Li F, Bond AM, Zhang J. ChemSusChem, 2020, 13: 59–77

    Article  CAS  PubMed  Google Scholar 

  25. Zhu X, Li Y. WIREs Comput Mol Sci, 2019, 9: e1416

    Article  CAS  Google Scholar 

  26. Garg S, Li M, Weber AZ, Ge L, Li L, Rudolph V, Wang G, Rufford TE. J Mater Chem A, 2020, 8: 1511–1544

    Article  CAS  Google Scholar 

  27. Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I. Chem Rev, 2019, 119: 7610–7672

    Article  CAS  PubMed  Google Scholar 

  28. Liu C, Gong J, Gao Z, Xiao L, Wang G, Lu J, Zhuang L. Sci China Chem, 2021, 64: 1660–1678

    Article  CAS  Google Scholar 

  29. Li X, Wang S, Li L, Zu X, Sun Y, Xie Y. Acc Chem Res, 2020, 53: 2964–2974

    Article  CAS  PubMed  Google Scholar 

  30. Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y. Nature, 2016, 529: 68–71

    Article  CAS  PubMed  Google Scholar 

  31. Gao S, Jiao X, Sun Z, Zhang W, Sun Y, Wang C, Hu Q, Zu X, Yang F, Yang S, Liang L, Wu J, Xie Y. Angew Chem Int Ed, 2016, 55: 698–702

    Article  CAS  Google Scholar 

  32. Su P, Xu W, Qiu Y, Zhang T, Li X, Zhang H. ChemSusChem, 2018, 11: 848–853

    Article  CAS  PubMed  Google Scholar 

  33. Jiao X, Chen Z, Li X, Sun Y, Gao S, Yan W, Wang C, Zhang Q, Lin Y, Luo Y, Xie Y. J Am Chem Soc, 2017, 139: 7586–7594

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Sun Y, Xu J, Shao Y, Wu J, Xu X, Pan Y, Ju H, Zhu J, Xie Y. Nat Energy, 2019, 4: 690–699

    Article  CAS  Google Scholar 

  35. Geng Z, Kong X, Chen W, Su H, Liu Y, Cai F, Wang G, Zeng J. Angew Chem Int Ed, 2018, 57: 6054–6059

    Article  CAS  Google Scholar 

  36. Gao S, Sun Z, Liu W, Jiao X, Zu X, Hu Q, Sun Y, Yao T, Zhang W, Wei S, Xie Y. Nat Commun, 2017, 8: 14503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Geng Z, Cao Y, Chen W, Kong X, Liu Y, Yao T, Lin Y. Appl Catal B-Environ, 2019, 240: 234–240

    Article  CAS  Google Scholar 

  38. Jeong HY, Balamurugan M, Choutipalli VSK, Jeong E, Subramanian V, Sim U, Nam KT. J Mater Chem A, 2019, 7: 10651–10661

    Article  CAS  Google Scholar 

  39. Zu X, Li X, Liu W, Sun Y, Xu J, Yao T, Yan W, Gao S, Wang C, Wei S, Xie Y. Adv Mater, 2019, 31: 1808135

    Article  Google Scholar 

  40. Yang HB, Hung SF, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang HY, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen HM, Li CM, Zhang T, Liu B. Nat Energy, 2018, 3: 140–147

    Article  CAS  Google Scholar 

  41. Xu J, Li X, Liu W, Sun Y, Ju Z, Yao T, Wang C, Ju H, Zhu J, Wei S, Xie Y. Angew Chem Int Ed, 2017, 56: 9121–9125

    Article  CAS  Google Scholar 

  42. Wang X, Chen Z, Zhao X, Yao T, Chen W, You R, Zhao C, Wu G, Wang J, Huang W, Yang J, Hong X, Wei S, Wu Y, Li Y. Angew Chem Int Ed, 2018, 57: 1944–1948

    Article  CAS  Google Scholar 

  43. Nam DH, Bushuyev OS, Li J, De Luna P, Seifitokaldani A, Dinh CT, García de Arquer FP, Wang Y, Liang Z, Proppe AH, Tan CS, Todorović P, Shekhah O, Gabardo CM, Jo JW, Choi J, Choi MJ, Baek SW, Kim J, Sinton D, Kelley SO, Eddaoudi M, Sargent EH. J Am Chem Soc, 2018, 140: 11378–11386

    Article  CAS  PubMed  Google Scholar 

  44. Baruch MF, Pander III JE, White JL, Bocarsly AB. ACS Catal, 2015, 5: 3148–3156

    Article  CAS  Google Scholar 

  45. Svintsitskiy DA, Kardash TY, Stonkus OA, Slavinskaya EM, Stadnichenko AI, Koscheev SV, Chupakhin AP, Boronin AI. J Phys Chem C, 2013, 117: 14588–14599

    Article  CAS  Google Scholar 

  46. Zhang Z, Liu C, Brosnahan JT, Zhou H, Xu W, Zhang S. J Mater Chem A, 2019, 7: 23775–23780

    Article  CAS  Google Scholar 

  47. AzároffLV, Kaplow R, Kato N, Weiss RJ, Wilson A, Young R. New York: McGraw-Hill, 1974

  48. Muhammad S, Lee S, Kim H, Yoon J, Jang D, Yoon J, Park JH, Yoon WS. J Power Sources, 2015, 285: 156–160

    Article  CAS  Google Scholar 

  49. Zhang A, Liang Y, Li H, Zhang B, Liu Z, Chang Q, Zhang H, Zhu CF, Geng Z, Zhu W, Zeng J. Nano Lett, 2020, 20: 8229–8235

    Article  CAS  PubMed  Google Scholar 

  50. Koningsberger DC, Mojet BL, van Dorssen GE, Ramaker DE. Top Catal, 2000, 10: 143–155

    Article  CAS  Google Scholar 

  51. Teo BK. EXAFS: Basic Principles and Data Analysis. Springer-Verlag: Berlin, 1986

    Book  Google Scholar 

  52. Yano J, Yachandra VK. Photosynth Res, 2009, 102: 241–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang B, Zhang J, Shi J, Tan D, Liu L, Zhang F, Lu C, Su Z, Tan X, Cheng X, Han B, Zheng L, Zhang J. Nat Commun, 2019, 10: 2980

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jiang Z, Wang T, Pei J, Shang H, Zhou D, Li H, Dong J, Wang Y, Cao R, Zhuang Z, Chen W, Wang D, Zhang J, Li Y. Energy Environ Sci, 2020, 13: 2856–2863

    Article  CAS  Google Scholar 

  55. Zeng ZC, Hu S, Huang SC, Zhang YJ, Zhao WX, Li JF, Jiang C, Ren B. Anal Chem, 2016, 88: 9381–9385

    Article  CAS  PubMed  Google Scholar 

  56. Lombardi JR, Birke RL. Acc Chem Res, 2009, 42: 734–742

    Article  CAS  PubMed  Google Scholar 

  57. Long DA. Raman Spectroscopy. New York: McGraw-Hill, 1977. 78–81

    Google Scholar 

  58. Parker FS. Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry. New York: Plenum Press, 1983

    Google Scholar 

  59. Dutta A, Kuzume A, Rahaman M, Vesztergom S, Broekmann P. ACS Catal, 2015, 5: 7498–7502

    Article  CAS  Google Scholar 

  60. Ren D, Deng Y, Handoko AD, Chen CS, Malkhandi S, Yeo BS. ACS Catal, 2015, 5: 2814–2821

    Article  CAS  Google Scholar 

  61. Deng Y, Huang Y, Ren D, Handoko AD, Seh ZW, Hirunsit P, Yeo BS. ACS Appl Mater Interfaces, 2018, 10: 28572–28581

    Article  CAS  PubMed  Google Scholar 

  62. Bohra D, Ledezma-Yanez I, Li G, de Jong W, Pidko EA, Smith WA. Angew Chem Int Ed, 2019, 58: 1345–1349

    Article  CAS  Google Scholar 

  63. Berthomieu C, Hienerwadel R. Photosynth Res, 2009, 101: 157–170

    Article  CAS  PubMed  Google Scholar 

  64. Ryczkowski J. Catal Today, 2001, 68: 263–381

    Article  CAS  Google Scholar 

  65. Firet NJ, Smith WA. ACS Catal, 2017, 7: 606–612

    Article  CAS  Google Scholar 

  66. Pérez-Gallent E, Figueiredo MC, Calle-Vallejo F, Koper MTM. Angew Chem Int Ed, 2017, 56: 3621–3624

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2019YFA0210004), the National Natural Science Foundation of China (22125503, 21975242, U2032212), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000), the Youth Innovation Promotion Association of CAS (CX2340007003), the Major Program of Development Foundation of Hefei Center for Physical Science and Technology (2020HSC-CIP003), the Fok Ying-Tong Education Foundation (161012), Users with Excellence Program of Hefei Science Center (2020HSC-UE001), the University Synergy Innovation Program of Anhui Province (GXXT-2020-001), the Anhui Provincial Natural Science Foundation of China (2108085QB69), and the Fundamental Research Funds for the Central Universities (WK2060000006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Sun.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, X., Hu, Z., Li, L. et al. Progress and perspectives for engineering and recognizing active sites of two-dimensional materials in CO2 electroreduction. Sci. China Chem. 65, 428–440 (2022). https://doi.org/10.1007/s11426-021-1184-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1184-6

Keywords

Navigation