Skip to main content
Log in

Promotion of the oxygen evolution performance of Ni-Fe layered hydroxides via the introduction of a proton-transfer mediator anion

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Developing efficient catalysts with high durability and activity for the oxygen evolution reaction (OER) is imperative for sustainable energy conversion technologies, including hydrogen generation and CO2 reduction, as well as other electrochemical energy storage systems. To this end, a comprehensive understanding of the mechanism for the water oxidation reaction is vital. Herein, a surfactant, nonafluoro-1-butanesulfonate (FBS), was introduced into Ni-Fe layered double hydroxide (NiFe-FBS/CFP) via electrochemical deposition on the surface of a carbon fiber paper (CFP) substrate. The as-prepared NiFe-FBS/CFP electrode exhibited excellent catalytic activities for OER compared to the Ni-Fe layered double hydroxide based electrode (NiFe-LDH/CFP), an excellent stability of 15 h, and an ultralow Tafel slope of 25.8 mV dec−1. Furthermore, by combining the results of pH-dependent kinetics investigations, chemical probing, proton inventory studies, and isotopic and atom-protontransfer measurements, it was observed that a proton-transfer process controls the reaction rates of both the NiFe-LDH and NiFe-FBS catalysts, and the residual sulfonate groups serve as proton transfer mediator to accelerate the proton transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dionigi F, Zeng Z, Sinev I, Merzdorf T, Deshpande S, Lopez MB, Kunze S, Zegkinoglou I, Sarodnik H, Fan D, Bergmann A, Drnec J, Araujo JF, Gliech M, Teschner D, Zhu J, Li WX, Greeley J, Cuenya BR, Strasser P. Nat Commun, 2020, 11: 2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li F, Yang H, Li W, Sun L. Joule, 2018, 2: 36–60

    Article  CAS  Google Scholar 

  3. He J, Zou Y, Huang Y, Li C, Liu Y, Zhou L, Dong CL, Lu X, Wang S. Sci China Chem, 2020, 63: 1684–1693

    Article  CAS  Google Scholar 

  4. Li H, Xie F, Zhang MT. ACS Catal, 2021, 11: 68–73

    Article  CAS  Google Scholar 

  5. Meyer TJ, Huynh MHV, Thorp HH. Angew Chem Int Ed, 2007, 46: 5284–5304

    Article  CAS  Google Scholar 

  6. Moreno-Hernandez IA, MacFarland CA, Read CG, Papadantonakis KM, Brunschwig BS, Lewis NS. Energy Environ Sci, 2017, 10: 2103–2108

    Article  CAS  Google Scholar 

  7. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J. Chem Soc Rev, 2017, 46: 4645–4660

    Article  CAS  PubMed  Google Scholar 

  8. Yang H, Gao S, Rao D, Zhang C, Zhou X, Yang S, Ye J, Yang S, Lai F, Yan X. Sci China Chem, 2021, 64: 101–108

    Article  CAS  Google Scholar 

  9. Zhao WN, Liu ZP. Chem Sci, 2014, 5: 2256–2264

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhang H, Ji H, Ma W, Chen C, Zhao J. J Am Chem Soc, 2016, 138: 2705–2711

    Article  CAS  PubMed  Google Scholar 

  11. Savéant JM. Angew Chem Int Ed, 2019, 58: 2125–2128

    Article  Google Scholar 

  12. Lee CH, Dogutan DK, Nocera DG. J Am Chem Soc, 2011, 133: 8775–8777

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, McCrory CCL. Nat Commun, 2019, 10: 1683

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bhunia S, Rana A, Roy P, Martin DJ, Pegis ML, Roy B, Dey A. J Am Chem Soc, 2018, 140: 9444–9457

    Article  CAS  PubMed  Google Scholar 

  15. Li W, Li F, Yang H, Wu X, Zhang P, Shan Y, Sun L. Nat Commun, 2019, 10: 5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Devanathan R, Dupuis M. Phys Chem Chem Phys, 2012, 14: 11281

    Article  CAS  PubMed  Google Scholar 

  17. Lu Z, Xu W, Zhu W, Yang Q, Lei X, Liu J, Li Y, Sun X, Duan X. Chem Commun, 2014, 50: 6479–6482

    Article  CAS  Google Scholar 

  18. Abellán G, Coronado E, Martí-Gastaldo C, Pinilla-Cienfuegos E, Ribera A. J Mater Chem, 2010, 20: 7451–7455

    Article  Google Scholar 

  19. Wang Z, Wang J, Li Z, Gong P, Liu X, Zhang L, Ren J, Wang H, Yang S. Carbon, 2012, 50: 5403–5410

    Article  CAS  Google Scholar 

  20. An H, Li Y, Feng Y, Cao Y, Cao C, Long P, Li S, Feng W. Chem Commun, 2018, 54: 2727–2730

    Article  CAS  Google Scholar 

  21. Tressaud A, Moguet F, Flandrois S, Chambon M, Guimon C, Nanse G, Papirer E, Gupta V, Bahl OP. J Phys Chem Solids, 1996, 57: 745–751

    Article  CAS  Google Scholar 

  22. Chen GF, Luo Y, Ding LX, Wang H. ACS Catal, 2018, 8: 526–530

    Article  CAS  Google Scholar 

  23. Nasef MM, Saidi H, Nor HM, Yarmo MA. J Appl Polym Sci, 2000, 76: 336–349

    Article  CAS  Google Scholar 

  24. Lv D, Li Y, Wang L. Int J Biol Macromolecules, 2020, 148: 979–987

    Article  CAS  Google Scholar 

  25. Kim SS, Britcher L, Kumar S, Griesser HJ. JSM, 2018, 47: 1913–1922

    Article  Google Scholar 

  26. Li J, Huang W, Wang M, Xi S, Meng J, Zhao K, Jin J, Xu W, Wang Z, Liu X, Chen Q, Xu L, Liao X, Jiang Y, Owusu KA, Jiang B, Chen C, Fan D, Zhou L, Mai L. ACS Energy Lett, 2019, 4: 285–292

    Article  CAS  Google Scholar 

  27. Sun F, Wang G, Ding Y, Wang C, Yuan B, Lin Y. Adv Energy Mater, 2018, 8: 1800584

    Article  Google Scholar 

  28. Tsai CE, Hwang BJ. Fuel Cells, 2007, 7: 408–416

    Article  CAS  Google Scholar 

  29. Gruger A, Régis A, Schmatko T, Colomban P. Vibal Spectr, 2001, 26: 215–225

    Article  CAS  Google Scholar 

  30. Qiu Z, Tai CW, Niklasson GA, Edvinsson T. Energy Environ Sci, 2019, 12: 572–581

    Article  CAS  Google Scholar 

  31. Trześniewski BJ, Diaz-Morales O, Vermaas DA, Longo A, Bras W, Koper MTM, Smith WA. J Am Chem Soc, 2015, 137: 15112–15121

    Article  PubMed  Google Scholar 

  32. Edwards HGM, Brown DR, Dale JR, Plant S. J Mol Structure, 2001, 595: 111–125

    Article  CAS  Google Scholar 

  33. Wang J, Zhong H, Wang Z, Meng F, Zhang X. ACS Nano, 2016, 10: 2342–2348

    Article  CAS  PubMed  Google Scholar 

  34. Mavrikis S, Perry SC, Leung PK, Wang L, Ponce de León C. ACS Sustain Chem Eng, 2020, 9: 76–91

    Article  Google Scholar 

  35. Wei C, Xu ZJ. Small Methods, 2018, 2: 1800168

    Article  Google Scholar 

  36. Masa J, Piontek S, Wilde P, Antoni H, Eckhard T, Chen YT, Muhler M, Apfel UP, Schuhmann W. Adv Energy Mater, 2019, 9: 1900796

    Article  Google Scholar 

  37. Yang C, Fontaine O, Tarascon JM, Grimaud A. Angew Chem Int Ed, 2017, 56: 8652–8656

    Article  CAS  Google Scholar 

  38. Tao HB, Xu Y, Huang X, Chen J, Pei L, Zhang J, Chen JG, Liu B. Joule, 2019, 3: 1498–1509

    Article  CAS  Google Scholar 

  39. Huang ZF, Song J, Du Y, Xi S, Dou S, Nsanzimana JMV, Wang C, Xu ZJ, Wang X. Nat Energy, 2019, 4: 329–338

    Article  CAS  Google Scholar 

  40. Dincă M, Surendranath Y, Nocera DG. Proc Natl Acad Sci USA, 2010, 107: 10337–10341

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bai L, Lee S, Hu X. Angew Chem Int Ed, 2021, 60: 3095–3103

    Article  CAS  Google Scholar 

  42. Giordano L, Han B, Risch M, Hong WT, Rao RR, Stoerzinger KA, Shao-Horn Y. Catal Today, 2016, 262: 2–10

    Article  CAS  Google Scholar 

  43. Moonshiram D, Purohit V, Concepcion JJ, Meyer TJ, Pushkar Y. Materials, 2013, 6: 392–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pasquini C, Zaharieva I, González-Flores D, Chernev P, Mohammadi MR, Guidoni L, Smith RDL, Dau H. J Am Chem Soc, 2019, 141: 2938–2948

    Article  CAS  PubMed  Google Scholar 

  45. Krishtalik LI. BioChim Biophysica Acta (BBA) — Bioenergetics, 2000, 1458: 6–27

    Article  CAS  Google Scholar 

  46. Young ER, Rosenthal J, Hodgkiss JM, Nocera DG. J Am Chem Soc, 2009, 131: 7678–7684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hammes-Schiffer S. J Am Chem Soc, 2015, 137: 8860–8871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brammer L, Bruton EA, Sherwood P. Cryst Growth Des, 2001, 1: 277–290

    Article  CAS  Google Scholar 

  49. Chaudhari SR, Mogurampelly S, Suryaprakash N. J Phys Chem B, 2013, 117: 1123–1129

    Article  CAS  PubMed  Google Scholar 

  50. Chen Z, Vannucci AK, Concepcion JJ, Jurss JW, Meyer TJ. Proc Natl Acad Sci USA, 2011, 108: E1461–E1469

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was conducted in the Fundamental Research Center of Artificial Photosynthesis (FReCAP), and financially supported by the National Natural Science Foundation of China (22172011 and 22088102), the K&A Wallenberg Foundation (KAW 2016.0072), and Key Laboratory of Bio-based Chemicals of Liaoning Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Li.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2021_1178_MOESM1_ESM.docx

Promotion of the Oxygen Evolution Catalytic Performance of Ni-Fe Layered Hydroxides via the Introduction of a Proton Transfer Mediator Anion, approximately 6.47 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, F., Zhao, Y. et al. Promotion of the oxygen evolution performance of Ni-Fe layered hydroxides via the introduction of a proton-transfer mediator anion. Sci. China Chem. 65, 382–390 (2022). https://doi.org/10.1007/s11426-021-1178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1178-y

Navigation