Skip to main content
Log in

Visible-light-mediated tungsten-catalyzed C-H amination of unactivated alkanes with nitroarenes

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Alkylamines are important motifs in pharmaceutical and material sciences. The existing reports of C-H amination are limited to ammonia, diazo and azide nitrogen sources. This work describes a rapid construction of C-N bonds from accessible nitroarene and alkane feedstock under decatungstate catalysis. A variety of C-H precursors including gaseous, linear, cyclic and benzylic hydrocarbons could adopt this protocol to afford the corresponding alkylamines in high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Nugent TC. Chiral Amine Synthesis: Methods, Developments and Applications. Weinheim: Wiley-VCH, 2010

    Book  Google Scholar 

  2. Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat Chem, 2018, 10: 383–394

    Article  CAS  PubMed  Google Scholar 

  3. Cushnie TPT, Cushnie B, Lamb AJ. Int J Antimicrob Agents, 2014, 44: 377–386

    Article  CAS  PubMed  Google Scholar 

  4. Kittakoop P, Mahidol C, Ruchirawat S. Curr Top Med Chem, 2013, 14: 239–252

    Article  CAS  Google Scholar 

  5. Banks WA. BMC Neurol, 2009, 9: S3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mayol-Llinàs J, Farnaby W, Nelson A. Chem Commun, 2017, 53: 12345–12348

    Article  Google Scholar 

  7. Yu LF, Zhang HK, Caldarone BJ, Eaton JB, Lukas RJ, Kozikowski AP. J Med Chem, 2014, 57: 8204–8223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roughley SD, Jordan AM. J Med Chem, 2011, 54: 3451–3479

    Article  CAS  PubMed  Google Scholar 

  9. Park Y, Kim Y, Chang S. Chem Rev, 2017, 117: 9247–9301

    Article  CAS  PubMed  Google Scholar 

  10. Trowbridge A, Walton SM, Gaunt MJ. Chem Rev, 2020, 120: 2613–2692

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y, Shi SL, Niu D, Liu P, Buchwald SL. Science, 2015, 349: 62–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kalck P, Urrutigoïty M. Chem Rev, 2018, 118: 3833–3861

    Article  CAS  PubMed  Google Scholar 

  13. Muñiz K. Acc Chem Res, 2018, 51: 1507–1519

    Article  PubMed  CAS  Google Scholar 

  14. Yang Q, Wang Q, Yu Z. Chem Soc Rev, 2015, 44: 2305–2329

    Article  CAS  PubMed  Google Scholar 

  15. Irrgang T, Kempe R. Chem Rev, 2019, 119: 2524–2549

    Article  CAS  PubMed  Google Scholar 

  16. Scammells PJ. Substitution on the amine nitrogen (update 2013). In: Banert K, Drabowicz J, Oestreich M, Plietker BJ, Ramsden C, Schaumann E, Stoltz BM, Weinreb SM, Eds. Science of Synthesis Knowledge Updates. Stuttgart: Thieme Publishing Group, 2013. 427–461

    Google Scholar 

  17. Salvatore RN, Yoon CH, Jung KW. Tetrahedron, 2001, 57: 7785–7811

    Article  CAS  Google Scholar 

  18. Laudadio G, Deng Y, van der Wal K, Ravelli D, Nuño M, Fagnoni M, Guthrie D, Sun Y, Noël T. Science, 2020, 369: 92–96

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Lei M, Gong L. Nat Catal, 2019, 2: 1016–1026

    Article  CAS  Google Scholar 

  20. Fu J, Ren Z, Bacsa J, Musaev DG, Davies HML. Nature, 2018, 564: 395–399

    Article  CAS  PubMed  Google Scholar 

  21. Tran BL, Li B, Driess M, Hartwig JF. J Am Chem Soc, 2014, 136: 2555–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brunard E, Boquet V, van Elslande E, Saget T, Dauban P. J Am Chem Soc, 2021, 143: 6407–6412

    Article  CAS  PubMed  Google Scholar 

  23. Hartwig JF. J Am Chem Soc, 2016, 138: 2–24

    Article  CAS  PubMed  Google Scholar 

  24. Cook AK, Schimler SD, Matzger AJ, Sanford MS. Science, 2016, 351: 1421–1424

    Article  CAS  PubMed  Google Scholar 

  25. Smith KT, Berritt S, González-Moreiras M, Ahn S, Smith III MR, Baik MH, Mindiola DJ. Science, 2016, 351: 1424–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Michos D, Sassano CA, Krajnik P, Crabtree RH. Angew Chem Int Ed, 1993, 32: 1491–1492

    Article  Google Scholar 

  27. Bettinger HF, Filthaus M, Bornemann H, Oppel IM. Angew Chem Int Ed, 2008, 47: 4744–4747

    Article  CAS  Google Scholar 

  28. Hu A, Guo JJ, Pan H, Zuo Z. Science, 2018, 361: 668–672

    Article  CAS  PubMed  Google Scholar 

  29. Gunsalus NJ, Park SH, Hashiguchi BG, Koppaka A, Smith SJ, Ess DH, Periana RA. Organometallics, 2019, 38: 2319–2322

    Article  CAS  Google Scholar 

  30. Lee J, Jin S, Kim D, Hong SH, Chang S. J Am Chem Soc, 2021, 143: 5191–5200

    Article  CAS  PubMed  Google Scholar 

  31. Gui J, Pan CM, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science, 2015, 348: 886–891

    Article  CAS  PubMed  Google Scholar 

  32. Xiao J, He Y, Ye F, Zhu S. Chem, 2018, 4: 1645–1657

    Article  CAS  Google Scholar 

  33. Deng G, Chen W, Li CJ. Adv Synth Catal, 2009, 351: 353–356

    Article  CAS  Google Scholar 

  34. Cheung CW, Hu X. Nat Commun, 2016, 7: 12494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Rauser M, Eckert R, Gerbershagen M, Niggemann M. Angew Chem Int Ed, 2019, 58: 6713–6717

    Article  CAS  Google Scholar 

  36. Li G, Qin Z, Radosevich AT. J Am Chem Soc, 2020, 142: 16205–16210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Waele VD, Poizat O, Fagnoni M, Bagno A, Ravelli D. ACS Catal, 2016, 6: 7174–7182

    Article  CAS  Google Scholar 

  38. Wu W, Fu Z, Tang S, Zou S, Wen X, Meng Y, Sun S, Deng J, Liu Y, Yin D. Appl Catal B-Environ, 2015, 164: 113–119

    Article  CAS  Google Scholar 

  39. Schultz DM, Lévesque F, DiRocco DA, Reibarkh M, Ji Y, Joyce LA, Dropinski JF, Sheng H, Sherry BD, Davies IW. Angew Chem Int Ed, 2017, 56: 15274–15278

    Article  CAS  Google Scholar 

  40. Laudadio G, Govaerts S, Wang Y, Ravelli D, Koolman HF, Fagnoni M, Djuric SW, Noël T. Angew Chem Int Ed, 2018, 57: 4078–4082

    Article  CAS  Google Scholar 

  41. Ioffe SL, Tartakovskii VA, Novikov SS. Russ Chem Rev, 1966, 35: 19–32

    Article  Google Scholar 

  42. Simmons EM, Hartwig JF. Angew Chem Int Ed, 2012, 51: 3066–3072

    Article  CAS  Google Scholar 

  43. Tzirakis MD, Lykakis IN, Orfanopoulos M. Chem Soc Rev, 2009, 38: 2609–2621

    Article  CAS  PubMed  Google Scholar 

  44. Nielsen CDT, Burés J. Chem Sci, 2019, 10: 348–353

    Article  CAS  PubMed  Google Scholar 

  45. Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DWC. Nature, 2018, 560: 70–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meisel D, Neta P. J Am Chem Soc, 1975, 97: 5198–5203

    Article  CAS  Google Scholar 

  47. Chen JR, Yan DM, Wei Q, Xiao WJ. ChemPhotoChem, 2017, 1: 148–158

    Article  CAS  Google Scholar 

  48. Yan DM, Xiao C, Chen JR. Chem, 2018, 4: 2496–2498

    Article  CAS  Google Scholar 

  49. Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21772085, 21971107, 2201101) and China Postdoctoral Science Foundation (2021T140309, 2021M691511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Ni, S., Wang, X. et al. Visible-light-mediated tungsten-catalyzed C-H amination of unactivated alkanes with nitroarenes. Sci. China Chem. 65, 678–685 (2022). https://doi.org/10.1007/s11426-021-1170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1170-2

Keywords

Navigation