Skip to main content
Log in

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Exploring two-dimensional (2D) magnetic semiconductors with room-temperature magnetic ordering and electrically controllable spin-polarization is a highly desirable but challenging task for nano-spintronics. Here, through first-principles calculations, we propose to realize such a material by exfoliating the recently synthesized organometallic layered crystal Li0.7[Cr(pyz)2]Cl0.7·0.25(THF) (pyz=pyrazine, THF=tetrahydrofuran). The feasibility of exfoliation is confirmed by the rather low exfoliation energy of 0.27 J m−2, even smaller than that of graphite. In exfoliated Cr(pyz)2 monolayers, each pyrazine ring grabs one electron from the Cr atom to become a radical anion, and then a strong d-p direct-exchange magnetic interaction emerges between Cr cations and pyrazine radicals, resulting in room-temperature ferrimagnetism with a Curie temperature of 342 K. Moreover, the Cr(pyz)2 monolayer is revealed to be an intrinsic bipolar magnetic semiconductor where electrical doping can induce half-metallic conduction with controllable spin-polarization direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu ZQ, Cava RJ, Louie SG, Xia J, Zhang X. Nature, 2017, 546: 265–269

    CAS  PubMed  Google Scholar 

  2. Zhang Z, Shang J, Jiang C, Rasmita A, Gao W, Yu T. Nano Lett, 2019, 19: 3138–3142

    CAS  PubMed  Google Scholar 

  3. Huang B, Clark G, Navarro-Moratalla E, Klein DR, Cheng R, Seyler KL, Zhong D, Schmidgall E, McGuire MA, Cobden DH, Yao W, Xiao D, Jarillo-Herrero P, Xu X. Nature, 2017, 546: 270–273

    CAS  PubMed  Google Scholar 

  4. Miao N, Xu B, Zhu L, Zhou J, Sun Z. J Am Chem Soc, 2018, 140: 2417–2420

    CAS  PubMed  Google Scholar 

  5. Guo Y, Zhang Y, Yuan S, Wang B, Wang J. Nanoscale, 2018, 10: 18036–18042

    CAS  PubMed  Google Scholar 

  6. Wang B, Zhang X, Zhang Y, Yuan S, Guo Y, Dong S, Wang J. Mater Horiz, 2020, 7: 1623–1630

    CAS  Google Scholar 

  7. Huang C, Feng J, Wu F, Ahmed D, Huang B, Xiang H, Deng K, Kan E. J Am Chem Soc, 2018, 140: 11519–11525

    CAS  PubMed  Google Scholar 

  8. Li X, Li X, Yang J. J Phys Chem Lett, 2020, 11: 4193–4197

    CAS  PubMed  Google Scholar 

  9. Jiang Z, Wang P, Xing J, Jiang X, Zhao J. ACS Appl Mater Interfaces, 2018, 10: 39032–39039

    CAS  PubMed  Google Scholar 

  10. Zheng S, Huang C, Yu T, Xu M, Zhang S, Xu H, Liu Y, Kan E, Wang Y, Yang G. J Phys Chem Lett, 2019, 10: 2733–2738

    CAS  PubMed  Google Scholar 

  11. Chen S, Wu F, Li Q, Sun H, Ding J, Huang C, Kan E. Nanoscale, 2020, 12: 15670–15676

    CAS  PubMed  Google Scholar 

  12. Li X, Yang J. J Am Chem Soc, 2019, 141: 109–112

    CAS  PubMed  Google Scholar 

  13. Li X, Yang J. J Phys Chem Lett, 2019, 10: 2439–2444

    CAS  PubMed  Google Scholar 

  14. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science, 2013, 341: 1230444

    PubMed  Google Scholar 

  15. Perlepe P, Oyarzabal I, Mailman A, Yquel M, Platunov M, Dovgaliuk I, Rouzières M, Négrier P, Mondieig D, Suturina EA, Dourges MA, Bonhommeau S, Musgrave RA, Pedersen KS, Chernyshov D, Wilhelm F, Rogalev A, Mathonière C, Clérac R. Science, 2020, 370: 587–592

    CAS  PubMed  Google Scholar 

  16. Song X, Liu J, Zhang T, Chen L. Sci China Chem, 2020, 63: 1391–1401

    CAS  Google Scholar 

  17. Wang H, Li X, Sun J, Liu Z, Yang J. 2D Mater, 2017, 4: 045020

    Google Scholar 

  18. Liu B, Zhao G, Liu Z, Wang ZF. Nano Lett, 2019, 19: 6492–6497

    CAS  PubMed  Google Scholar 

  19. Shi D, Zheng R, Sun MJ, Cao X, Sun CX, Cui CJ, Liu CS, Zhao J, Du M. Angew Chem Int Ed, 2017, 56: 14637–14641

    CAS  Google Scholar 

  20. Lu H, Xiao C, Song R, Li T, Maughan AE, Levin A, Brunecky R, Berry JJ, Mitzi DB, Blum V, Beard MC. J Am Chem Soc, 2020, 142: 13030–13040

    CAS  PubMed  Google Scholar 

  21. Li X, Yang J. Natl Sci Rev, 2016, 3: 365–381

    CAS  Google Scholar 

  22. Li X, Yang J. Phys Chem Chem Phys, 2013, 15: 15793–15801

    CAS  PubMed  Google Scholar 

  23. Li X, Wu X, Li Z, Yang J, Hou JG. Nanoscale, 2012, 4: 5680–5685

    CAS  PubMed  Google Scholar 

  24. Ding Y, Wang Y. Nanoscale, 2020, 12: 1002–1012

    CAS  PubMed  Google Scholar 

  25. Zhang D, Long M, Xie F, Ouyang J, Xu H, Gao Y. Sci Rep, 2016, 6: 23677

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li X, Wu X, Li Z, Yang J. Phys Rev B, 2015, 92: 125202

    Google Scholar 

  27. Li X, Wu X, Yang J. J Am Chem Soc, 2014, 136: 11065–11069

    CAS  PubMed  Google Scholar 

  28. Pang Z, Wang Y, Ji W, Li P. Chem Phys, 2021, 542: 111058

    CAS  Google Scholar 

  29. Liu MY, Huang Y, Chen QY, Cao C, He Y. Sci Rep, 2016, 6: 29114

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  31. Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  32. Liechtenstein AI, Anisimov VI, Zaanen J. Phys Rev B, 1995, 52: R5467–R5470

    CAS  Google Scholar 

  33. Johnson ER, Becke AD. J Chem Phys, 2006, 124: 174104

    PubMed  Google Scholar 

  34. Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758–1775

    CAS  Google Scholar 

  35. Parlinski K, Li ZQ, Kawazoe Y. Phys Rev Lett, 1997, 78: 4063–4066

    CAS  Google Scholar 

  36. Hoover WG. Phys Rev A, 1985, 31: 1695–1697

    CAS  Google Scholar 

  37. Ziegler T, Rauk A. Inorg Chem, 1979, 18: 1558–1565

    CAS  Google Scholar 

  38. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T. J Comput Chem, 2001, 22: 931–967

    CAS  Google Scholar 

  39. Henkelman G, Uberuaga BP, Jónsson H. J Chem Phys, 2000, 113: 9901–9904

    CAS  Google Scholar 

  40. Heyd J, Scuseria GE, Ernzerhof M. J Chem Phys, 2003, 118: 8207–8215

    CAS  Google Scholar 

  41. Marsman M, Paier J, Stroppa A, Kresse G. J Phys-Condens Matter, 2008, 20: 064201

    CAS  PubMed  Google Scholar 

  42. Wen XD, Martin RL, Roy LE, Scuseria GE, Rudin SP, Batista ER, McCleskey TM, Scott BL, Bauer E, Joyce JJ, Durakiewicz T. J Chem Phys, 2012, 137: 154707

    PubMed  Google Scholar 

  43. Du A, Sanvito S, Smith SC. Phys Rev Lett, 2012, 108: 197207

    PubMed  Google Scholar 

  44. Göltl F, Hafner J. J Chem Phys, 2012, 136: 064501

    PubMed  Google Scholar 

  45. Ziambaras E, Kleis J, Schröder E, Hyldgaard P. Phys Rev B, 2007, 76: 155425

    Google Scholar 

  46. Xiang HJ, Wei SH, Whangbo MH. Phys Rev Lett, 2008, 100: 167207

    CAS  PubMed  Google Scholar 

  47. Liu C, Zhao G, Hu T, Bellaiche L, Ren W. Phys Rev B, 2021, 103: L081403

    CAS  Google Scholar 

  48. Zhang B, Zhang Q, Bai Y. J Phys-Condens Matter, 2018, 30: 175301

    PubMed  Google Scholar 

  49. Wang S, Wang J, Khazaei M. Phys Chem Chem Phys, 2020, 22: 11731–11739

    CAS  PubMed  Google Scholar 

  50. Lado JL, Fernández-Rossier J. 2D Mater, 2017, 4: 035002

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21688102), by the National Key Research & Development Program of China (2016YFA0200604), by Anhui Initiative in Quantum Information Technologies (AHY090400), by the Youth Innovation Promotion Association CAS (2019441), and by USTC Research Funds of the Double First-Class Initiative (YD2060002011). The computational resources are provided by the Supercomputing Center of University of Science and Technology of China, Supercomputing Center of Chinese Academy of Sciences, and Tianjin and Shanghai Supercomputer Centers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Wu, Xingxing Li or Jinlong Yang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2021_1160_MOESM1_ESM.docx

Two-Dimensional Bipolar Magnetic Semiconductor with High Curie Temperature and Electrically Controllable Spin Polarization Realized in Exfoliated Cr(pyrazine)2 Monolayer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Lv, H., Liu, X. et al. Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers. Sci. China Chem. 64, 2212–2217 (2021). https://doi.org/10.1007/s11426-021-1160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1160-7

Keywords

Navigation