Skip to main content
Log in

A trinuclear {FeIII2FeII} complex involving both spin and non-spin transitions exhibits three-step and wide thermal hysteresis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The engineering of switchable molecules with magnetic multistability is lying on the cutting-edge research topics for integrating multi-switches and ternary memory devices. Here we presented a cyanide-bridged {FeIII2FeII} desolvated complex {[(pzTp)FeIII-(CN)3]2[FeII(L)]} (1), obtained through single-crystal-to-single-crystal (SCSC) transformation from its solvated phase {[(pzTp)-FeIII(CN)3]2[FeII(L)]}·2CH3OH·5H2O (1·sol). Remarkably, 1 exhibited unprecedented three-step transition in magnetization with wide thermal hysteresis (44, 40, and 36 K) in the temperature range of 80–320 K. The detailed studies demonstrated that the tristable character originates from both an order-disorder structural phase transition (SPT) and a strongly cooperative two-step spin crossover (SCO) process. This work thus provides a new promising strategy for realizing multiple bistablity in magnetization by introducing two different transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sato O. Nat Chem, 2016, 8: 644–656

    Article  CAS  PubMed  Google Scholar 

  2. Sato O, Tao J, Zhang YZ. Angew Chem Int Ed, 2007, 46: 2152–2187

    Article  CAS  Google Scholar 

  3. Kahn O, Martinez CJ. Science, 1998, 279: 44–48

    Article  CAS  Google Scholar 

  4. Huang W, Ma X, Sato O, Wu D. Chem Soc Rev, 2021, 50: 6832–6870

    Article  CAS  PubMed  Google Scholar 

  5. Halcrow MA. Spin Crossover Materials: Properties and Applications. New York: John Wiley & Sons, 2013

    Book  Google Scholar 

  6. Halcrow MA. Chem Soc Rev, 2011, 40: 4119–4142

    Article  CAS  PubMed  Google Scholar 

  7. Molnár G, Rat S, Salmon L, Nicolazzi W, Bousseksou A. Adv Mater, 2018, 30: 17003862

    Article  Google Scholar 

  8. Chorazy S, Charytanowicz T, Pinkowicz D, Wang J, Nakabayashi K, Klimke S, Renz F, Ohkoshi SI, Sieklucka B. Angew Chem Int Ed, 2020, 59: 15741–15749

    Article  CAS  Google Scholar 

  9. Schneider B, Demeshko S, Dechert S, Meyer F. Angew Chem Int Ed, 2010, 49: 9274–9277

    Article  CAS  Google Scholar 

  10. Sciortino NF, Scherl-Gruenwald KR, Chastanet G, Halder GJ, Chapman KW, Létard JF, Kepert CJ. Angew Chem Int Ed, 2012, 51: 10154–10158

    Article  CAS  Google Scholar 

  11. Murphy MJ, Zenere KA, Ragon F, Southon PD, Kepert CJ, Neville SM. J Am Chem Soc, 2017, 139: 1330–1335

    Article  CAS  PubMed  Google Scholar 

  12. Liu W, Peng YY, Wu SG, Chen YC, Hoque MN, Ni ZP, Chen XM, Tong ML. Angew Chem Int Ed, 2017, 56: 14982–14986

    Article  CAS  Google Scholar 

  13. Piñeiro-López L, Valverde-Muñoz FJ, Trzop E, Muñoz MC, Seredyuk M, Castells-Gil J, da Silva I, Martí-Gastaldo C, Collet E, Real JA. Chem Sci, 2021, 12: 1317–1326

    Article  Google Scholar 

  14. Ni ZP, Liu JL, Hoque MN, Liu W, Li JY, Chen YC, Tong ML. Coord Chem Rev, 2017, 335: 28–43

    Article  CAS  Google Scholar 

  15. Halcrow MA. Chem Lett, 2014, 43: 1178–1188

    Article  CAS  Google Scholar 

  16. Nakanishi T, Hori Y, Wu S, Sato H, Okazawa A, Kojima N, Horie Y, Okajima H, Sakamoto A, Shiota Y, Yoshizawa K, Sato O. Angew Chem Int Ed, 2020, 59: 14781–14787

    Article  CAS  Google Scholar 

  17. Li ZY, Ohtsu H, Kojima T, Dai JW, Yoshida T, Breedlove BK, Zhang WX, Iguchi H, Sato O, Kawano M, Yamashita M. Angew Chem Int Ed, 2016, 55: 5184–5189

    Article  CAS  Google Scholar 

  18. Matsumoto T, Newton GN, Shiga T, Hayami S, Matsui Y, Okamoto H, Kumai R, Murakami Y, Oshio H. Nat Commun, 2014, 5: 3865

    Article  CAS  PubMed  Google Scholar 

  19. Li ZY, Dai JW, Shiota Y, Yoshizawa K, Kanegawa S, Sato O. Chem Eur J, 2013, 19: 12948–12952

    Article  CAS  PubMed  Google Scholar 

  20. Wei RJ, Huo Q, Tao J, Huang RB, Zheng LS. Angew Chem Int Ed, 2011, 50: 8940–8943

    Article  CAS  Google Scholar 

  21. Nihei M, Tahira H, Takahashi N, Otake Y, Yamamura Y, Saito K, Oshio H. J Am Chem Soc, 2010, 132: 3553–3560

    Article  CAS  PubMed  Google Scholar 

  22. Bréfuelâ N, Watanabe H, Toupet L, Come JÃ, Matsumoto N, Collet E, Tanaka K, Tuchagues JP. Angew Chem Int Ed, 2009, 48: 9304–9307

    Article  Google Scholar 

  23. Zhao XH, Huang XC, Zhang SL, Shao D, Wei HY, Wang XY. J Am Chem Soc, 2013, 135: 16006–16009

    Article  CAS  PubMed  Google Scholar 

  24. Fujita W, Awaga K. Science, 1999, 286: 261–262

    Article  CAS  PubMed  Google Scholar 

  25. Su SQ, Wu SQ, Baker ML, Bencok P, Azuma N, Miyazaki Y, Nakano M, Kang S, Shiota Y, Yoshizawa K, Kanegawa S, Sato O. J Am Chem Soc, 2020, 142: 11434–11441

    Article  CAS  PubMed  Google Scholar 

  26. Juhász G, Matsuda R, Kanegawa S, Inoue K, Sato O, Yoshizawa K. J Am Chem Soc, 2009, 131: 4560–4561

    Article  PubMed  Google Scholar 

  27. Hayami S, Shigeyoshi Y, Akita M, Inoue K, Kato K, Osaka K, Takata M, Kawajiri R, Mitani T, Maeda Y. Angew Chem Int Ed, 2005, 44: 4899–4903

    Article  CAS  Google Scholar 

  28. Hayami S, Murata K, Urakami D, Kojima Y, Akita M, Inoue K. Chem Commun, 2008, 6510–6512

  29. Seredyuk M, Muñoz MC, Castro M, Romero-Morcillo T, Gaspar AB, Real JA. Chem Eur J, 2013, 19: 6591–6596

    Article  CAS  PubMed  Google Scholar 

  30. Fujinami T, Nishi K, Hamada D, Murakami K, Matsumoto N, Iijima S, Kojima M, Sunatsuki Y. Inorg Chem, 2015, 54: 7291–7300

    Article  CAS  PubMed  Google Scholar 

  31. Valverde-Muñoz FJ, Seredyuk M, Muñoz MC, Molnár G, Bibik YS, Real JA. Angew Chem Int Ed, 2020, 59: 18632–18638

    Article  Google Scholar 

  32. Rosario-Amorin D, Dechambenoit P, Bentaleb A, Rouzières M, Mathonière C, Clérac R. J Am Chem Soc, 2018, 140: 98–101

    Article  CAS  PubMed  Google Scholar 

  33. Valverde-Muñoz FJ, Seredyuk M, Meneses-Sánchez M, Muñoz MC, Bartual-Murgui C, Real JA. Chem Sci, 2019, 10: 3807–3816

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wen W, Meng YS, Jiao CQ, Liu Q, Zhu HL, Li YM, Oshio H, Liu T. Angew Chem Int Ed, 2020, 59: 16393–16397

    Article  CAS  Google Scholar 

  35. Yang J, Zhao XH, Deng YF, Zhang XY, Chang XY, Zheng Z, Zhang YZ. Inorg Chem, 2020, 59: 16215–16224

    Article  CAS  PubMed  Google Scholar 

  36. Liu S, Deng, YF, Chen ZY, Meng L, Chang X, Zheng Z, Zhang YZ. CCS Chem, 2020, 2: 2530–2538

    Google Scholar 

  37. Meng L, Deng YF, Liu S, Zheng Z, Zhang YZ. Sci China Chem, 2021, 64: 1340–1348

    Article  CAS  Google Scholar 

  38. You M, Gan DX, Deng YF, Shao D, Meng YS, Chang XY, Zhang YZ. CCS Chem, 2021, 3: 2593–2600

    Google Scholar 

  39. Chen JT, Zhao XH, Zhang YZ. Dalton Trans, 2020, 49: 5949–5956

    Article  CAS  PubMed  Google Scholar 

  40. Zhao XH, Shao D, Chen JT, Liu M, Li T, Yang J, Zhang YZ. Dalton Trans, 2021, 50: 9768–9774

    Article  CAS  PubMed  Google Scholar 

  41. Gu ZG, Liu W, Yang QF, Zhou XH, Zuo JL, You XZ. Inorg Chem, 2007, 46: 3236–3244

    Article  CAS  PubMed  Google Scholar 

  42. Lorenz S, Plietker B. ChemCatChem, 2016, 8: 3203–3206

    Article  CAS  Google Scholar 

  43. Carlin RL. Magnetochemistry. Berlin, Heidelbeg: Springer-Verlag Press, 1986

    Book  Google Scholar 

  44. Sheldrick GM. SHELXL-2014. Program for the solution of crystal structures. Göttingen: University of Göttingen, 2014

    Google Scholar 

  45. Sheldrick GM. SHELXL-2014. Program for crystal structure refinement. Göttingen: University of Göttingen, 2014

    Google Scholar 

  46. Sheldrick GM. SADABS. v.2.01. Bruker/Siemens area detector absorption correction program. Madison, Wisconism: Bruker AXS, 1998

    Google Scholar 

  47. Hu JX, Xu Y, Meng YS, Zhao L, Hayami S, Sato O, Liu T. Angew Chem Int Ed, 2017, 56: 13052–13055

    Article  CAS  Google Scholar 

  48. Ye YS, Chen XQ, De Cai Y, Fei B, Dechambenoit P, Rouzières M, Mathonière C, Clérac R, Bao X. Angew Chem Int Ed, 2019, 58: 18888–18891

    Article  CAS  Google Scholar 

  49. Liu T, Zheng H, Kang S, Shiota Y, Hayami S, Mito M, Sato O, Yoshizawa K, Kanegawa S, Duan C. Nat Commun, 2013, 4: 2826

    Article  Google Scholar 

  50. Reczyński M, Pinkowicz D, Nakabayashi K, Näther C, Stanek J, Kozieł M, Kalinowska-Tłuścik J, Sieklucka B, Ohkoshi SI, Nowicka B. Angew Chem Int Ed, 2021, 60: 2330–2338

    Article  Google Scholar 

  51. Shao D, Shi L, Shen FX, Wei XQ, Sato O, Wang XY. Inorg Chem, 2019, 58: 11589–11598

    Article  CAS  PubMed  Google Scholar 

  52. Hayami S, Gu Z, Yoshiki H, Fujishima A, Sato O. J Am Chem Soc, 2001, 123: 11644–11650

    Article  CAS  PubMed  Google Scholar 

  53. Weber B, Bauer W, Obel J. Angew Chem Int Ed, 2008, 47: 10098–10101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Stable Support Plan Program of Shenzhen Natural Science Fund (20200925151834005), the National Natural Science Foundation of China (21671095), and the China Postdoctoral Science Foundation (2020M682763).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Zhu Zhang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2021_1153_MOESM1_ESM.pdf

A trinuclear {FeIII2FeII} complex involving both spin and non-spin transitions exhibits three-step and wide thermal hysteresis

Supplementary material, approximately 1.10 MB.

Supplementary material, approximately 4.88 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, XH., Shao, D., Chen, JT. et al. A trinuclear {FeIII2FeII} complex involving both spin and non-spin transitions exhibits three-step and wide thermal hysteresis. Sci. China Chem. 65, 532–538 (2022). https://doi.org/10.1007/s11426-021-1153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1153-0

Navigation