Skip to main content
Log in

16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Despite the significant progress made recently in all-polymer solar cells (all-PSCs), it is still quite challenging to achieve high open-circuit voltage (Voc) and short-circuit current density (Jsc) simultaneously in order to further improve their performance. The recent strategy of using selenophene to replace thiophene on the Y6 based polymer acceptors has resulted in significantly improved Jscs of the resulting all-PSCs. However, such modifications have also depressed Voc, which compromises the overall performance of the devices. Herein, we present the design and synthesis of a novel polymer acceptor, PYT-1S1Se, created by inserting an asymmetrical selenophene-fused framework to precisely manipulate optical absorption and electronic properties. Compared with the selenium-free analog, PYT-2S, and symmetrical selenium-fused analog, PYT-2Se, the PYT-1S1Se derived all-PSCs not only deliver optimized Jsc (24.1 mA cm−2) and Voc (0.926 V) metrics, but also exhibit a relatively low energy loss of 0.502 eV. Consequently, these devices obtain a record-high power conversion efficiency (PCE) of 16.3% in binary all-PSCs. This work demonstrates an effective molecular design strategy for balancing the trade-off between Voc and Jsc to achieve high-efficiency all-PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003

    Article  CAS  Google Scholar 

  2. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Article  CAS  PubMed  Google Scholar 

  3. Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142

    Article  CAS  Google Scholar 

  4. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098

    Article  CAS  PubMed  Google Scholar 

  5. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  PubMed  Google Scholar 

  6. Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat Energy, 2021, 6: 605–613

    Article  CAS  Google Scholar 

  7. Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J Am Chem Soc, 2017, 139: 3356–3359

    Article  CAS  PubMed  Google Scholar 

  8. Zhan L, Li S, Xia X, Li Y, Lu X, Zuo L, Shi M, Chen H. Adv Mater, 2021, 33: 2007231

    Article  CAS  Google Scholar 

  9. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205

    Article  CAS  Google Scholar 

  10. Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y. Nat Photonics, 2020, 14: 300–305

    Article  CAS  Google Scholar 

  11. Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang JL, Chang SY, Zhang Z, Huang W, Wang R, Meng D, Gao F, Yang Y. Nat Commun, 2019, 10: 570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Holliday S, Ashraf RS, Nielsen CB, Kirkus M, Röhr JA, Tan CH, Collado-Fregoso E, Knall AC, Durrant JR, Nelson J, McCulloch I. J Am Chem Soc, 2015, 137: 898–904

    Article  CAS  PubMed  Google Scholar 

  13. Fu H, Gao W, Li Y, Lin F, Wu X, Son JH, Luo J, Woo HY, Zhu Z, Jen AK. Small Methods, 2020, 4: 2000687

    Article  CAS  Google Scholar 

  14. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  15. Gao W, Fu H, Li Y, Lin F, Sun R, Wu Z, Wu X, Zhong C, Min J, Luo J, Woo HY, Zhu Z, Jen AKY. Adv Energy Mater, 2021, 11: 2003177

    Article  CAS  Google Scholar 

  16. Yang W, Luo Z, Sun R, Guo J, Wang T, Wu Y, Wang W, Guo J, Wu Q, Shi M, Li H, Yang C, Min J. Nat Commun, 2020, 11: 1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Xu Y, Ford MJ, Li F, Sun J, Ling X, Wang Y, Gu J, Yuan J, Ma W. Adv Energy Mater, 2018, 8: 1800029

    Article  Google Scholar 

  18. Choi J, Kim W, Kim S, Kim TS, Kim BJ. Chem Mater, 2019, 31: 9057–9069

    Article  CAS  Google Scholar 

  19. Benten H, Mori D, Ohkita H, Ito S. J Mater Chem A, 2016, 4: 5340–5365

    Article  CAS  Google Scholar 

  20. Lee C, Lee S, Kim GU, Lee W, Kim BJ. Chem Rev, 2019, 119: 8028–8086

    Article  CAS  PubMed  Google Scholar 

  21. Wang G, Melkonyan FS, Facchetti A, Marks TJ. Angew Chem Int Ed, 2019, 58: 4129–4142

    Article  CAS  Google Scholar 

  22. Du J, Hu K, Meng L, Angunawela I, Zhang J, Qin S, Liebman-Pelaez A, Zhu C, Zhang Z, Ade H, Li Y. Angew Chem Int Ed, 2020, 59: 15181–15185

    Article  CAS  Google Scholar 

  23. Fan B, Ying L, Wang Z, He B, Jiang XF, Huang F, Cao Y. Energy Environ Sci, 2017, 10: 1243–1251

    Article  CAS  Google Scholar 

  24. Hwang YJ, Courtright BAE, Ferreira AS, Tolbert SH, Jenekhe SA. Adv Mater, 2015, 27: 4578–4584

    Article  CAS  PubMed  Google Scholar 

  25. Li Z, Xu X, Zhang W, Meng X, Genene Z, Ma W, Mammo W, Yartsev A, Andersson MR, Janssen RAJ, Wang E. Energy Environ Sci, 2017, 10: 2212–2221

    Article  CAS  Google Scholar 

  26. Mori D, Benten H, Okada I, Ohkita H, Ito S. Energy Environ Sci, 2014, 7: 2939–2943

    Article  CAS  Google Scholar 

  27. Shi S, Chen P, Chen Y, Feng K, Liu B, Chen J, Liao Q, Tu B, Luo J, Su M, Guo H, Kim MG, Facchetti A, Guo X. Adv Mater, 2019, 31: 1905161

    Article  CAS  Google Scholar 

  28. Zhou N, Lin H, Lou SJ, Yu X, Guo P, Manley EF, Loser S, Hartnett P, Huang H, Wasielewski MR, Chen LX, Chang RPH, Facchetti A, Marks TJ. Adv Energy Mater, 2014, 4: 1300785

    Article  Google Scholar 

  29. Xu Y, Yuan J, Liang S, Chen JD, Xia Y, Larson BW, Wang Y, Su GM, Zhang Y, Cui C, Wang M, Zhao H, Ma W. ACS Energy Lett, 2019, 4: 2277–2286

    Article  CAS  Google Scholar 

  30. Xu X, Feng K, Yu L, Yan H, Li R, Peng Q. ACS Energy Lett, 2020, 5: 2434–2443

    Article  CAS  Google Scholar 

  31. Chen D, Yao J, Chen L, Yin J, Lv R, Huang B, Liu S, Zhang ZG, Yang C, Chen Y, Li Y. Angew Chem Int Ed, 2018, 57: 4580–4584

    Article  CAS  Google Scholar 

  32. Guo Y, Li Y, Awartani O, Han H, Zhao J, Ade H, Yan H, Zhao D. Adv Mater, 2017, 29: 1700309

    Article  Google Scholar 

  33. Wu Y, Schneider S, Walter C, Chowdhury AH, Bahrami B, Wu HC, Qiao Q, Toney MF, Bao Z. J Am Chem Soc, 2020, 142: 392–406

    Article  CAS  PubMed  Google Scholar 

  34. Zhao R, Wang N, Yu Y, Liu J. Chem Mater, 2020, 32: 1308–1314

    Article  CAS  Google Scholar 

  35. Zhou N, Dudnik AS, Li TING, Manley EF, Aldrich TJ, Guo P, Liao HC, Chen Z, Chen LX, Chang RPH, Facchetti A, Olvera de la Cruz M, Marks TJ. J Am Chem Soc, 2016, 138: 1240–1251

    Article  CAS  PubMed  Google Scholar 

  36. Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56: 13503–13507

    Article  CAS  Google Scholar 

  37. Fan Q, An Q, Lin Y, Xia Y, Li Q, Zhang M, Su W, Peng W, Zhang C, Liu F, Hou L, Zhu W, Yu D, Xiao M, Moons E, Zhang F, Anthopoulos TD, Inganäs O, Wang E. Energy Environ Sci, 2020, 13: 5017–5027

    Article  CAS  Google Scholar 

  38. Jia T, Zhang J, Zhong W, Liang Y, Zhang K, Dong S, Ying L, Liu F, Wang X, Huang F, Cao Y. Nano Energy, 2020, 72: 104718

    Article  CAS  Google Scholar 

  39. Sun H, Yu H, Shi Y, Yu J, Peng Z, Zhang X, Liu B, Wang J, Singh R, Lee J, Li Y, Wei Z, Liao Q, Kan Z, Ye L, Yan H, Gao F, Guo X. Adv Mater, 2020, 32: 2004183

    Article  CAS  Google Scholar 

  40. Wu J, Meng Y, Guo X, Zhu L, Liu F, Zhang M. J Mater Chem A, 2019, 7: 16190–16196

    Article  CAS  Google Scholar 

  41. Fan Q, Ma R, Liu T, Yu J, Xiao Y, Su W, Cai G, Li Y, Peng W, Guo T, Luo Z, Sun H, Hou L, Zhu W, Lu X, Gao F, Moons E, Yu D, Yan H, Wang E. Sci China Chem, 2021, 64: 1380–1388

    Article  CAS  Google Scholar 

  42. Sun R, Wang W, Yu H, Chen Z, Xia XX, Shen H, Guo J, Shi M, Zheng Y, Wu Y, Yang W, Wang T, Wu Q, Yang YM, Lu X, Xia J, Brabec CJ, Yan H, Li Y, Min J. Joule, 2021, 5: 1548–1565

    Article  CAS  Google Scholar 

  43. Luo Z, Liu T, Ma R, Xiao Y, Zhan L, Zhang G, Sun H, Ni F, Chai G, Wang J, Zhong C, Zou Y, Guo X, Lu X, Chen H, Yan H, Yang C. Adv Mater, 2020, 32: 2005942

    Article  CAS  Google Scholar 

  44. Peng F, An K, Zhong W, Li Z, Ying L, Li N, Huang Z, Zhu C, Fan B, Huang F, Cao Y. ACS Energy Lett, 2020, 5: 3702–3707

    Article  CAS  Google Scholar 

  45. Fu H, Li Y, Yu J, Wu Z, Fan Q, Lin F, Woo HY, Gao F, Zhu Z, Jen AKY. J Am Chem Soc, 2021, 143: 2665–2670

    Article  CAS  PubMed  Google Scholar 

  46. Yu H, Luo S, Sun R, Angunawela I, Qi Z, Peng Z, Zhou W, Han H, Wei R, Pan M, Cheung AMH, Zhao D, Zhang J, Ade H, Min J, Yan H. Adv Funct Mater, 2021, 31: 2100791

    Article  CAS  Google Scholar 

  47. Su N, Ma R, Li G, Liu T, Feng LW, Lin C, Chen J, Song J, Xiao Y, Qu J, Lu X, Sangwan VK, Hersam MC, Yan H, Facchetti A, Marks TJ. ACS Energy Lett, 2021, 6: 728–738

    Article  CAS  Google Scholar 

  48. Ashraf RS, Meager I, Nikolka M, Kirkus M, Planells M, Schroeder BC, Holliday S, Hurhangee M, Nielsen CB, Sirringhaus H, McCulloch I. J Am Chem Soc, 2015, 137: 1314–1321

    Article  CAS  PubMed  Google Scholar 

  49. Fei Z, Han Y, Gann E, Hodsden T, Chesman ASR, McNeill CR, Anthopoulos TD, Heeney M. J Am Chem Soc, 2017, 139: 8552–8561

    Article  CAS  PubMed  Google Scholar 

  50. Lin F, Zuo L, Gao K, Zhang M, Jo SB, Liu F, Jen AKY. Chem Mater, 2019, 31: 6770–6778

    Article  CAS  Google Scholar 

  51. Lin F, Jiang K, Kaminsky W, Zhu Z, Jen AKY. J Am Chem Soc, 2020, 142: 15246–15251

    Article  CAS  PubMed  Google Scholar 

  52. Qi F, Jiang K, Lin F, Wu Z, Zhang H, Gao W, Li Y, Cai Z, Woo HY, Zhu Z, Jen AKY. ACS Energy Lett, 2020, 6: 9–15

    Article  Google Scholar 

  53. Fan Q, Fu H, Wu Q, Wu Z, Lin F, Zhu Z, Min J, Woo HY, Jen AKY. Angew Chem Int Ed, 2021, 60: 15935–15943

    Article  CAS  Google Scholar 

  54. Yang C, An Q, Bai HR, Zhi HF, Ryu HS, Mahmood A, Zhao X, Zhang S, Woo HY, Wang JL. Angew Chem Int Ed, 2021, 60: 19241–19252

    Article  CAS  Google Scholar 

  55. Heeney M, Zhang W, Crouch DJ, Chabinyc ML, Gordeyev S, Hamilton R, Higgins SJ, McCulloch I, Skabara PJ, Sparrowe D, Tierney S. Chem Commun, 2007, 5061–5063

  56. Wang Y, Qian D, Cui Y, Zhang H, Hou J, Vandewal K, Kirchartz T, Gao F. Adv Energy Mater, 2018, 8: 1801352

    Article  Google Scholar 

  57. Shockley W, Queisser HJ. J Appl Phys, 1961, 32: 510–519

    Article  CAS  Google Scholar 

  58. Fu H, Wang Y, Meng D, Ma Z, Li Y, Gao F, Wang Z, Sun Y. ACS Energy Lett, 2018, 3: 2729–2735

    Article  CAS  Google Scholar 

  59. Zhou K, Wu Y, Liu Y, Zhou X, Zhang L, Ma W. ACS Energy Lett, 2019, 4: 1057–1064

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the APRC Grant of the City University of Hong Kong (9380086), Innovation and Technology Fund (ITS/497/18FP, GHP/021/18SZ), the Office of Naval Research (N00014-20-1-2191), the GRF grant (11307621) from the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (21905103), the Natural Science Foundation of Guangdong Province (2019A1515010761, 2019A1515011131), Guangdong Major Project of Basic and Applied Basic Research (2019B030302007), Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials (2019B121205002), and the Fundamental Research (Discipline Arrangement) Project funding from the Shenzhen Science and Technology Innovation Committee (JCYJ20180507181718203). A.K.-Y. Jen is thankful for the sponsorship of the Lee Shau-Kee Chair Professor of Materials Science. T.J. Marks thanks the US Office of Naval Research Contract N00014-20-1-2116 for support. The authors also thank Dr. Shanshan Chen from Chongqing University for help with GIWAXS measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex K.-Y. Jen.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors

Supporting Information for

11426_2021_1140_MOESM1_ESM.pdf

16.3% Efficiency Binary All-Polymer Solar Cells Enabled by a Novel Polymer Acceptor with an Asymmetrical Selenophene-Fused Backbone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Fan, Q., Gao, W. et al. 16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone. Sci. China Chem. 65, 309–317 (2022). https://doi.org/10.1007/s11426-021-1140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1140-x

Navigation