Skip to main content
Log in

Steric-switched defluorofunctionalization selectivity: controlled synthesis of monofluoroalkene-masked medium-sized heterocyclic lactams and lactones

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The steric-switched ipso-defluoroamination-triggered and ipso-defluorooxylation-triggered cyclization of (trifluoromethyl)alkenes with amino alcohols and diamines are achieved under mild conditions. This regioselective strategy distinguishes the different nucleophilic heteroatom sites in amino alcohols and unsymmetric diamines by the sequential defluorinative functionalization of two C(sp3)-F bonds in a CF3 group. Various attractive monofluoroalkene-masked medium-sized heterocyclic lactams and lactones are obtained in moderate to excellent yields. Simple derivation of these masked-heterocycles efficiently affords useful skeletons of lactams, lactones, and 1,4-oxazepanes in a single diastereoisomer. Mechanism studies indicate that a unique sequential ipso-/γ-selective defluorinative functionalization pathway is involved in these transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baud LG, Manning MA, Arkless HL, Stephens TC, Unsworth WP. Chem Eur J, 2017, 23: 2225–2230

    Article  CAS  PubMed  Google Scholar 

  2. Lawer A, Rossi-Ashton JA, Stephens TC, Challis BJ, Epton RG, Lynam JM, Unsworth WP. Angew Chem Int Ed, 2019, 58: 13942–13947

    Article  CAS  Google Scholar 

  3. Zhu BH, Zheng YX, Kang W, Deng C, Zhou JM, Ye LW. Sci China Chem, 2021, 64: 1985–1989

    Article  CAS  Google Scholar 

  4. Shiina I. Chem Rev, 2007, 107: 239–273

    Article  CAS  PubMed  Google Scholar 

  5. Uno H, Kawai K, Shiro M, Shibata N. ACS Catal, 2020, 10: 14117–14126

    Article  CAS  Google Scholar 

  6. Wohlfahrt M, Harms K, Koert U. Angew Chem Int Ed, 2011, 50: 8404–8406

    Article  CAS  Google Scholar 

  7. Maslivetc VA, Turner DN, McNair KN, Frolova L, Rogelj S, Maslivetc AA, Aksenov NA, Rubina M, Rubin M. J Org Chem, 2018, 83: 5650–5664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wattanasin S, Albert R, Ehrhardt C, Roche D, Sabio M, Hommel U, Welzenbach K, Weitz-Schmidt G. Bioorg Med Chem Lett, 2003, 13: 499–502

    Article  CAS  PubMed  Google Scholar 

  9. Smits G, Zemribo R. Eur J Org Chem, 2015, 2015(14): 3152–3156

    Article  CAS  Google Scholar 

  10. Smits G, Zemribo R. Org Biomol Chem, 2020, 18: 4566–4568

    Article  CAS  PubMed  Google Scholar 

  11. Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev, 2008, 37: 320–330

    Article  CAS  PubMed  Google Scholar 

  12. Hagmann WK. J Med Chem, 2008, 51: 4359–4369

    Article  CAS  PubMed  Google Scholar 

  13. Furuya T, Kamlet AS, Ritter T. Nature, 2011, 473: 470–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li C, Liao Y, Tan X, Liu X, Liu P, Lv WX, Wang H. Sci China Chem, 2021, 64: 999–1003

    Article  CAS  Google Scholar 

  15. Landelle G, Bergeron M, Turcotte-Savard MO, Paquin JF. Chem Soc Rev, 2011, 40: 2867–2908

    Article  CAS  PubMed  Google Scholar 

  16. Yanai H, Taguchi T. Eur J Org Chem, 2011, 2011(30): 5939–5954

    Article  CAS  Google Scholar 

  17. Yang J, Mao A, Yue Z, Zhu W, Luo X, Zhu C, Xiao Y, Zhang J. Chem Commun, 2015, 51: 8326–8329

    Article  CAS  Google Scholar 

  18. Chelucci G. Chem Rev, 2012, 112: 1344–1462

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Cao S. Tetrahedron Lett, 2017, 58: 375–392

    Article  CAS  Google Scholar 

  20. Jaroschik F. Chem Eur J, 2018, 24: 14572–14582

    Article  CAS  PubMed  Google Scholar 

  21. Lemal DM. J Org Chem, 2004, 69: 1–11

    Article  CAS  PubMed  Google Scholar 

  22. O’Hagan D. Chem Soc Rev, 2008, 37: 308–319

    Article  PubMed  Google Scholar 

  23. Burdeniuc J, Jedicka B, Crabtree RH. Chem Ber Recl, 1997, 130: 145–154

    Article  CAS  Google Scholar 

  24. Papaianina O, Amsharov KY. Chem Commun, 2016, 52: 1505–1508

    Article  CAS  Google Scholar 

  25. Yamada T, Saito K, Akiyama T. Adv Synth Catal, 2016, 358: 62–66

    Article  CAS  Google Scholar 

  26. Fujita T, Fuchibe K, Ichikawa J. Angew Chem Int Ed, 2019, 58: 390–402

    Article  CAS  Google Scholar 

  27. Tian F, Yan G, Yu J. Chem Commun, 2019, 55: 13486–13505

    Article  CAS  Google Scholar 

  28. Wang M, Pu X, Zhao Y, Wang P, Li Z, Zhu C, Shi Z. J Am Chem Soc, 2018, 140: 9061–9065

    Article  CAS  PubMed  Google Scholar 

  29. Jang YJ, Rose D, Mirabi B, Lautens M. Angew Chem Int Ed, 2018, 57: 16147–16151

    Article  CAS  Google Scholar 

  30. Yan SS, Wu DS, Ye JH, Gong L, Zeng X, Ran CK, Gui YY, Li J, Yu DG. ACS Catal, 2019, 9: 6987–6992

    Article  CAS  Google Scholar 

  31. Xu W, Jiang H, Leng J, Ong HW, Wu J. Angew Chem Int Ed, 2020, 59: 4009–4016

    Article  CAS  Google Scholar 

  32. Yue WJ, Day CS, Martin R. J Am Chem Soc, 2021, 143: 6395–6400

    Article  CAS  PubMed  Google Scholar 

  33. Zhu C, Sun MM, Chen K, Liu H, Feng C. Angew Chem Int Ed, 2021, 60: 20237–20242

    Article  CAS  Google Scholar 

  34. Fuchibe K, Takahashi M, Ichikawa J. Angew Chem Int Ed, 2012, 51: 12059–12062

    Article  CAS  Google Scholar 

  35. Ichitsuka T, Fujita T, Arita T, Ichikawa J. Angew Chem Int Ed, 2014, 53: 7564–7568

    Article  CAS  Google Scholar 

  36. Zeng H, Cai Y, Jiang H, Zhu C. Org Lett, 2021, 23: 66–70

    Article  CAS  PubMed  Google Scholar 

  37. Yu YJ, Zhang FL, Peng TY, Wang CL, Cheng J, Chen C, Houk KN, Wang YF. Science, 2021, 371: 1232–1240

    Article  CAS  PubMed  Google Scholar 

  38. Zeng H, Zhu C, Jiang H. Org Lett, 2019, 21: 1130–1133

    Article  CAS  PubMed  Google Scholar 

  39. Cai Y, Zeng H, Zhu C, Liu C, Liu G, Jiang H. Org Chem Front, 2020, 7: 1260–1265

    Article  CAS  Google Scholar 

  40. Zeng H, Zhu C, Liu C, Cai Y, Chen F, Jiang H. Chem Commun, 2020, 56: 6241–6244

    Article  CAS  Google Scholar 

  41. Zhu C, Zeng H, Liu C, Cai Y, Fang X, Jiang H. Org Lett, 2020, 22: 809–813

    Article  CAS  PubMed  Google Scholar 

  42. CCDC 2081847 (3fa), 2102762 (3im), 2081846 (4na), 2102761 (6ga), and 2081850 (9nm) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre

  43. Trost BM, Li CJ. Modern Alkyne Chemistry. Catalytic and Atom-Economic Transformations. Weinheim: Wiley-VCH, 2015

    Google Scholar 

  44. Shaw S, Bian Z, Zhao B, Tarr JC, Veerasamy N, Jeon KO, Belmar J, Arnold AL, Fogarty SA, Perry E, Sensintaffar JL, Camper DMV, Rossanese OW, Lee T, Olejniczak ET, Fesik SW. J Med Chem, 2018, 61: 2410–2421

    Article  CAS  PubMed  Google Scholar 

  45. Lee T, Christov PP, Shaw S, Tarr JC, Zhao B, Veerasamy N, Jeon KO, Mills JJ, Bian Z, Sensintaffar JL, Arnold AL, Fogarty SA, Perry E, Ramsey HE, Cook RS, Hollingshead M, Davis Millin M, Lee KM, Koss B, Budhraja A, Opferman JT, Kim K, Arteaga CL, Moore WJ, Olejniczak ET, Savona MR, Fesik SW. J Med Chem, 2019, 62: 3971–3988

    Article  CAS  PubMed  Google Scholar 

  46. Chen L, Liu Y, Song H, Liu Y, Wang L, Wang Q. Mol Divers, 2017, 21: 61–68

    Article  CAS  PubMed  Google Scholar 

  47. Alvarez SG, Botyanszki J, De Los Angeles J, Fu J, Fujimoto R, Gralapp JM, Griffith RC, Lu P, Pham SM, Roberts CD, Schmitz FU, Seepersaud M, Tommasi R, Villa AC, Wattanasin S, Yifru A, Zheng H, Zheng X. PCT Int Appl. 2009, WO 20090816129 A1

  48. Audouze K, Nielsen EØ, Peters D. J Med Chem, 2004, 47: 3089–3104

    Article  CAS  PubMed  Google Scholar 

  49. Bergeron M, Guyader D, Paquin JF. Org Lett, 2012, 14: 5888–5891

    Article  CAS  PubMed  Google Scholar 

  50. Fujita T, Morioka R, Arita T, Ichikawa J. Chem Commun, 2018, 54: 12938–12941

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21702064) and the Guangdong Basic and Applied Basic Research Foundation (2020B1515020012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanle Zhu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2021_1135_MOESM1_ESM.pdf

Steric-Switched Defluorofunctionalization Selectivity: Controlled Synthesis of Monofluoroalkene-Masked Medium-Sized Heterocyclic Lactams and Lactones

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Li, H., Jiang, H. et al. Steric-switched defluorofunctionalization selectivity: controlled synthesis of monofluoroalkene-masked medium-sized heterocyclic lactams and lactones. Sci. China Chem. 65, 554–562 (2022). https://doi.org/10.1007/s11426-021-1135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1135-8

Navigation