Skip to main content
Log in

Engineering DNA logic systems with non-canonical DNA-nanostructures: basic principles, recent developments and bio-applications

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Engineering DNA logic systems is considered as one of the most promising strategies for next-generation molecular computers. Owing to the inherent features of DNA, such as low cost, easy synthesis, and controllable hybridization, various DNA logic devices with different functions have been developed in the recent decade. Besides, a variety of logic-programmed biological applications are also explored, which initiates a new chapter for DNA logic computing. Although this field has gained rapid developments, a systematical review that could not only elaborate the logic principles of diverse DNA logic devices but also outline recent representative works is urgently needed. In this review, we first elaborate the general classification and logical principle of diverse DNA logic devices, in which the operating strategy of these devices and representative examples are selectively presented. Then, we review state-of-the-art advancements in DNA computing based on different non-canonical DNA-nanostructures during the past decade, in which some classical works are summarized. After that, the innovative applications of DNA computing to logic-controlled bioanalysis, cell imaging, and drug load/delivery are selectively presented. Finally, we analyze current obstacles and suggest appropriate prospects for this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shapiro E, Gil B. Nat Nanotech, 2007, 2: 84–85

    Article  CAS  Google Scholar 

  2. de Silva AP, Uchiyama S. Nat Nanotech, 2009, 2: 399–410

    Article  Google Scholar 

  3. de Silva PA, Gunaratne NHQ, McCoy CP. Nature, 1993, 364: 42–44

    Article  Google Scholar 

  4. Andréasson J, Pischel U. Chem Soc Rev, 2010, 39: 174–188

    Article  PubMed  Google Scholar 

  5. Andréasson J, Pischel U. Chem Soc Rev, 2015, 44: 1053–1069

    Article  PubMed  Google Scholar 

  6. Erbas-Cakmak S, Kolemen S, Sedgwick AC, Gunnlaugsson T, James TD, Yoon J, Akkaya EU. Chem Soc Rev, 2018, 47: 2228–2248

    Article  CAS  PubMed  Google Scholar 

  7. Mailloux S, Guz N, Zakharchenko A, Minko S, Katz E. J Phys Chem B, 2014, 118: 6775–6784

    Article  CAS  PubMed  Google Scholar 

  8. Adleman LM. Science, 1994, 266: 1021–1024

    Article  CAS  PubMed  Google Scholar 

  9. Jones MR, Seeman NC, Mirkin CA. Science, 2015, 347: 1260901

    Article  PubMed  Google Scholar 

  10. Ma DL, He HZ, Chan DSH, Leung CH. Chem Sci, 2013, 4: 3366–3380

    Article  CAS  Google Scholar 

  11. Xia F, Zuo X, Yang R, White RJ, Xiao Y, Kang D, Gong X, Lubin AA, Vallée-Bélisle A, Yuen JD, Hsu BYB, Plaxco KW. J Am Chem Soc, 2010, 132: 8557–8559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding B, Seeman NC. Science, 2006, 314: 1583–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cherry KM, Qian L. Nature, 2018, 559: 370–376

    Article  CAS  PubMed  Google Scholar 

  14. Seelig G, Soloveichik D, Zhang DY, Winfree E. Science, 2006, 314: 1585–1588

    Article  CAS  PubMed  Google Scholar 

  15. Tang Q, Lai W, Wang P, Xiong X, Xiao M, Li L, Fan C, Pei H. Angew Chem Int Ed, 2021, 60: 15013–15019

    Article  CAS  Google Scholar 

  16. Feng L, Lyu Z, Offenhäusser A, Mayer D. Angew Chem Int Ed, 2015, 54: 7693–7697

    Article  CAS  Google Scholar 

  17. Breaker RR, Joyce GF. Chem Biol, 1994, 1: 223–229

    Article  CAS  PubMed  Google Scholar 

  18. Elbaz J, Lioubashevski O, Wang F, Remacle F, Levine RD, Willner I. Nat Nanotech, 2010, 5: 417–422

    Article  CAS  Google Scholar 

  19. Orbach R, Remacle F, Levine RD, Willner I. Chem Sci, 2014, 5: 1074–1081

    Article  CAS  Google Scholar 

  20. Harding BI, Pollak NM, Stefanovic D, Macdonald J. Nano Lett, 2019, 19: 7655–7661

    Article  CAS  PubMed  Google Scholar 

  21. Fan D, Wang E, Dong S. Chem Sci, 2017, 8: 1888–1895

    Article  CAS  PubMed  Google Scholar 

  22. Zhu J, Zhang L, Li T, Dong S, Wang E. Adv Mater, 2013, 25: 2440–2444

    Article  CAS  PubMed  Google Scholar 

  23. Fan D, Wang E, Dong S. Mater Horiz, 2017, 4: 924–931

    Article  CAS  Google Scholar 

  24. Fan D, Wang J, Wang E, Dong S. Chem Sci, 2019, 10: 7290–7298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu L, Hong S, Sun N, Wang K, Zhou L, Ji L, Pei R. Chem Commun, 2016, 52: 179–182

    Article  CAS  Google Scholar 

  26. D Huang, C Yang, Y Yao, J Li, C Guo, J Chen, Y Zhang, S Yang, Q Yang, Y Tang. Chem-Eur J, 2019, 25: 6996–7003

    Article  CAS  PubMed  Google Scholar 

  27. Du Y, Peng P, Li T. Chem Commun, 2018, 54: 6132–6135

    Article  CAS  Google Scholar 

  28. Du Y, Peng P, Li T. ACS Nano, 2019, 13: 5778–5784

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Guo S, Liu Q, Qin L, Dong S, Liu Y, Wang E. Adv Sci, 2015, 2: 1500054

    Article  Google Scholar 

  30. Gao W, Zhang L, Zhang YM, Liang RP, Qiu JD. J Phys Chem C, 2014, 118: 14410–14417

    Article  CAS  Google Scholar 

  31. Yin J, Wang J, Niu R, Ren S, Wang D, Chao J. Chem Res Chin Univ, 2020, 36: 219–226

    Article  CAS  Google Scholar 

  32. Goodman RP, Heilemann M, Doose S, Erben CM, Kapanidis AN, Turberfield AJ. Nat Nanotech, 2008, 3: 93–96

    Article  CAS  Google Scholar 

  33. Zhou Z, Fan D, Willner I. ACS Nano, 2020, 14: 5046–5052

    Article  CAS  PubMed  Google Scholar 

  34. Arugula MA, Bocharova V, Halámek J, Pita M, Katz E. J Phys Chem B, 2010, 114: 5222–5226

    Article  CAS  PubMed  Google Scholar 

  35. Wu C, Wang K, Fan D, Zhou C, Liu Y, Wang E. Chem Commun, 2015, 51: 15940–15943

    Article  CAS  Google Scholar 

  36. Fan D, Zhu J, Liu Y, Wang E, Dong S. Nanoscale, 2016, 8: 3834–3840

    Article  CAS  PubMed  Google Scholar 

  37. Andréasson J, Pischel U, Straight SD, Moore TA, Moore AL, Gust D. J Am Chem Soc, 2011, 133: 11641–11648

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bälter M, Li S, Nilsson JR, Andréasson J, Pischel U. J Am Chem Soc, 2013, 135: 10230–10233

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fan D, Wang K, Zhu J, Xia Y, Han Y, Liu Y, Wang E. Chem Sci, 2015, 6: 1973–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fan D, Wang E, Dong S. Nano Res, 2017, 10: 2560–2569

    Article  CAS  Google Scholar 

  41. Wang K, Ren J, Fan D, Liu Y, Wang E. Chem Commun, 2014, 50: 14390–14393

    Article  CAS  Google Scholar 

  42. Orbach R, Wang F, Lioubashevski O, Levine RD, Remacle F, Willner I. Chem Sci, 2014, 5: 3381–3387

    Article  CAS  Google Scholar 

  43. Margulies D, Melman G, Shanzer A. J Am Chem Soc, 2006, 128: 4865–4871

    Article  CAS  PubMed  Google Scholar 

  44. Chen J, Zhou S, Wen J. Angew Chem Int Ed, 2014, 54: 446–450

    Google Scholar 

  45. Pei H, Liang L, Yao G, Li J, Huang Q, Fan C. Angew Chem Int Ed, 2012, 51: 9020–9024

    Article  CAS  Google Scholar 

  46. Lin Q, Wang A, Liu S, Li J, Wang J, Quan K, Yang X, Huang J, Wang K. Chem Commun, 2020, 56: 5303–5306

    Article  CAS  Google Scholar 

  47. Rothemund PWK. Nature, 2006, 440: 297–302

    Article  CAS  PubMed  Google Scholar 

  48. Douglas SM, Dietz H, Liedl T, Högberg B, Graf F, Shih WM. Nature, 2009, 459: 414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dietz H, Douglas SM, Shih WM. Science, 2009, 325: 725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Douglas SM, Bachelet I, Church GM. Science, 2012, 335: 831–834

    Article  CAS  PubMed  Google Scholar 

  51. Chatterjee G, Dalchau N, Muscat RA, Phillips A, Seelig G. Nat Nanotech, 2017, 12: 920–927

    Article  CAS  Google Scholar 

  52. Fan D, Zhu J, Zhai Q, Wang E, Dong S. Chem Commun, 2016, 52: 3766–3769

    Article  CAS  Google Scholar 

  53. Han D, Zhu Z, Wu C, Peng L, Zhou L, Gulbakan B, Zhu G, Williams KR, Tan W. J Am Chem Soc, 2012, 134: 20797–20804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang S, Li KB, Shi W, Zhang J, Han DM, Xu JJ. Nanoscale, 2019, 11: 5048–5057

    Article  CAS  PubMed  Google Scholar 

  55. Woods D, Doty D, Myhrvold C, Hui J, Zhou F, Yin P, Winfree E. Nature, 2019, 567: 366–372

    Article  CAS  PubMed  Google Scholar 

  56. Chen S, Xu Z, Yang W, Lin X, Li J, Li J, Yang H. Angew Chem Int Ed, 2019, 58: 18186–18190

    Article  CAS  Google Scholar 

  57. Chang X, Zhang C, Lv C, Sun Y, Zhang M, Zhao Y, Yang L, Han D, Tan W. J Am Chem Soc, 2019, 141: 12738–12743

    Article  CAS  PubMed  Google Scholar 

  58. Qu X, Wang S, Ge Z, Wang J, Yao G, Li J, Zuo X, Shi J, Song S, Wang L, Li L, Pei H, Fan C. J Am Chem Soc, 2017, 139: 10176–10179

    Article  CAS  PubMed  Google Scholar 

  59. Liao WC, Willner I. Adv Funct Mater, 2017, 27: 1702732

    Article  Google Scholar 

  60. Chen WH, Luo GF, Sohn YS, Nechushtai R, Willner I. Adv Funct Mater, 2019, 29: 1805341

    Article  Google Scholar 

  61. Chen WH, Yu X, Cecconello A, Sohn YS, Nechushtai R, Willner I. Chem Sci, 2017, 8: 5769–5780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Peng R, Zheng X, Lyu Y, Xu L, Zhang X, Ke G, Liu Q, You C, Huan S, Tan W. J Am Chem Soc, 2018, 140: 9793–9796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang C, Zhao Y, Xu X, Xu R, Li H, Teng X, Du Y, Miao Y, Lin HC, Han D. Nat Nanotechnol, 2020, 15: 709–715

    Article  CAS  PubMed  Google Scholar 

  64. Wang J, Fan D, Jiang C, Lu L. Nano Today, 2021, 36: 101034

    Article  CAS  Google Scholar 

  65. Li Z, Wang J, Chen Q, Ai K, Lu L. Sci China Chem, 2021, 64: 1389–1400

    Article  CAS  Google Scholar 

  66. Yang L, Zhao Y, Xu X, Xu K, Zhang M, Huang K, Kang H, Lin HC, Yang Y, Han D. Angew Chem Int Ed, 2020, 59: 17697–17704

    Article  CAS  Google Scholar 

  67. Gao Q, Zhao Y, Xu K, Zhang C, Ma Q, Qi L, Chao D, Zheng T, Yang L, Miao Y, Han D. Angew Chem Int Ed, 2020, 59: 23564–23568

    Article  CAS  Google Scholar 

  68. Miao P, Tang Y. ACS Cent Sci, 2021, 7: 1036–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhu Z, Zhai Y, Li Z, Zhu P, Mao S, Zhu C, Du D, Belfiore LA, Tang J, Lin Y. Mater Today, 2019, 30: 52–79

    Article  CAS  Google Scholar 

  70. Wang J, Li Z, Wang Y, Wei C, Ai K, Lu L. Mater Horiz, 2019, 6: 1517–1525

    Article  CAS  Google Scholar 

  71. Wang J, Ai K, Lu L. J Mater Chem A, 2019, 7: 16850–16858

    Article  CAS  Google Scholar 

  72. Fan D, Wang J, Wang E, Dong S. Adv Sci, 2020, 7: 2001766

    Article  CAS  Google Scholar 

  73. Wang S, Sun J, Zhao J, Lu S, Yang X. Anal Chem, 2018, 90: 3437–3442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21427811, 21675151). Dr. D. Fan thanks the starting support from Ocean University of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daoqing Fan or Shaojun Dong.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, D., Wang, J., Han, J. et al. Engineering DNA logic systems with non-canonical DNA-nanostructures: basic principles, recent developments and bio-applications. Sci. China Chem. 65, 284–297 (2022). https://doi.org/10.1007/s11426-021-1131-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1131-1

Keywords

Navigation