Skip to main content
Log in

A pre-organized monomer-reservoir strategy to prepare multidimensional phosphorescent organoplatinum nanocrystals and suprastructures

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The preparation of multidimensional nano- and micro structures, in particular suprastructures with well-defined morphology and bright emissions, is a challenging task in supramolecular assembly. For this purpose, a new type of amphiphilic diplatinum complexes is presented as an excellent building block to assemble into highly phosphorescent nanofibers by supramolecular Pt⋯Pt interactions. These organoplatinum supramolecular fibers are further used as a pre-organized monomer reservior for the metal ion-triggered post-transformation into crystalline nanoneedles, nanorods, nanobunches, microplates, and microflowers with controllable morphology and bright phosphorescence. A reverse transformation of the obtained nanorods into nanofibers is demonstrated with the aid of ethylenediamine tetraacetic acid. In contrast, the direct treatment of diplatinum complexes with different metal ions fails to give well-defined nano and microstructures, suggestive of the pre-organized role of nanofibers for the morphological transformation. Preliminary applications of these nano- and suprastructures in sensing temperature and organic vapours by emission signal changes are demonstrated. In contrast to the conventional hierarchical assembly, the pre-organized monomer-reservoir strategy disclosed in this study offers a versatile method for the synthesis of organic nano and suprastructures with multidimensional morphology and controllable emission properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim Y, Li W, Shin S, Lee M. Acc Chem Res, 2013, 46: 2888–2897

    Article  CAS  PubMed  Google Scholar 

  2. Baek K, Hwang I, Roy I, Shetty D, Kim K. Acc Chem Res, 2015, 48: 2221–2229

    Article  CAS  PubMed  Google Scholar 

  3. Babu SS, Praveen VK, Ajayaghosh A. Chem Rev, 2014, 114: 1973–2129

    Article  CAS  PubMed  Google Scholar 

  4. Ma X, Wang J, Tian H. Acc Chem Res, 2019, 52: 738–748

    Article  CAS  PubMed  Google Scholar 

  5. Moulin E, Armao Iv JJ, Giuseppone N. Acc Chem Res, 2019, 52: 975–983

    Article  CAS  PubMed  Google Scholar 

  6. Huang Y, Wang Z, Chen Z, Zhang Q. Angew Chem Int Ed, 2019, 58: 9696–9711

    Article  CAS  Google Scholar 

  7. Sun Y, Chen C, Stang PJ. Acc Chem Res, 2019, 52: 802–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen LJ, Yang HB. Acc Chem Res, 2018, 51: 2699–2710

    Article  CAS  PubMed  Google Scholar 

  9. Shi ZT, Hu YX, Hu Z, Zhang Q, Chen SY, Chen M, Yu JJ, Yin GQ, Sun H, Xu L, Li X, Feringa BL, Yang HB, Tian H, Qu DH. J Am Chem Soc, 2021, 143: 442–452

    Article  CAS  PubMed  Google Scholar 

  10. Jang JS, Koo WT, Kim DH, Kim ID. ACS Cent Sci, 2018, 4: 929–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nepal M, Sheedlo MJ, Das C, Chmielewski J. J Am Chem Soc, 2016, 138: 11051–11057

    Article  CAS  PubMed  Google Scholar 

  12. Knight AS, Larsson J, Ren JM, Bou Zerdan R, Seguin S, Vrahas R, Liu J, Ren G, Hawker CJ. J Am Chem Soc, 2018, 140: 1409–1414

    Article  CAS  PubMed  Google Scholar 

  13. Xiao J, He Q, Qiu S, Li H, Wang B, Zhang B, Bu W. Sci China Chem, 2020, 63: 792–801

    Article  CAS  Google Scholar 

  14. Zhu JL, Xu L, Ren YY, Zhang Y, Liu X, Yin GQ, Sun B, Cao X, Chen Z, Zhao XL, Tan H, Chen J, Li X, Yang HB. Nat Commun, 2019, 10: 4285

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yu Y, Tao YC, Zou SN, Li ZZ, Yan CC, Zhuo MP, Wang XD, Liao LS. Sci China Chem, 2020, 63: 1477–1482

    Article  CAS  Google Scholar 

  16. Liu H, Pang B, Garces R, Dervisoglu R, Chen L, Andreas L, Zhang K. Angew Chem Int Ed, 2018, 57: 16323–16328

    Article  CAS  Google Scholar 

  17. Oh JS, Kim KY, Park J, Lee H, Park Y, Cho J, Lee SS, Kim H, Jung SH, Jung JH. J Am Chem Soc, 2021, 143: 3113–3123

    Article  CAS  PubMed  Google Scholar 

  18. Mahesh S, Gopal A, Thirumalai R, Ajayaghosh A. J Am Chem Soc, 2012, 134: 7227–7230

    Article  CAS  PubMed  Google Scholar 

  19. Freeman R, Han M, Álvarez Z, Lewis JA, Wester JR, Stephanopoulos N, McClendon MT, Lynsky C, Godbe JM, Sangji H, Luijten E, Stupp SI. Science, 2018, 362: 808–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yano K, Itoh Y, Araoka F, Watanabe G, Hikima T, Aida T. Science, 2019, 363: 161–165

    Article  CAS  PubMed  Google Scholar 

  21. Han Y, Gao Z, Wang C, Zhong R, Wang F. Coord Chem Rev, 2020, 414: 213300

    Article  CAS  Google Scholar 

  22. Yoshida M, Kato M. Coord Chem Rev, 2018, 355: 101–115

    Article  CAS  Google Scholar 

  23. Chen Y, Li K, Lu W, Chui SSY, Ma CW, Che CM. Angew Chem Int Ed, 2009, 48: 9909–9913

    Article  CAS  Google Scholar 

  24. Aliprandi A, Mauro M, De Cola L. Nat Chem, 2016, 8: 10–15

    Article  CAS  PubMed  Google Scholar 

  25. Gao Z, Han Y, Wang F. Nat Commun, 2018, 9: 3977

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen Z, Chan MHY, Yam VWW. J Am Chem Soc, 2020, 142: 16471–16478

    Article  CAS  PubMed  Google Scholar 

  27. Sinn S, Yang L, Biedermann F, Wang D, Kübel C, Cornelissen JJLM, De Cola L. J Am Chem Soc, 2018, 140: 2355–2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robinson ME, Nazemi A, Lunn DJ, Hayward DW, Boott CE, Hsiao MS, Harniman RL, Davis SA, Whittell GR, Richardson RM, De Cola L, Manners I. ACS Nano, 2017, 11: 9162–9175

    Article  CAS  PubMed  Google Scholar 

  29. Gong ZL, Zhong YW. Sci China Chem, 2021, 64: 788–799

    Article  CAS  Google Scholar 

  30. Gong ZL, Zhong YW, Yao J. Chem Eur J, 2015, 21: 1554–1566

    Article  CAS  PubMed  Google Scholar 

  31. Gong ZL, Zhong YW, Yao J. J Mater Chem C, 2017, 5: 7222–7229

    CAS  Google Scholar 

  32. Yu G, Jie K, Huang F. Chem Rev, 2015, 115: 7240–7303

    Article  CAS  PubMed  Google Scholar 

  33. Zhang YM, Xu QY, Liu Y. Sci China Chem, 2019, 62: 549–560

    Article  CAS  Google Scholar 

  34. Zhang H, Liu Z, Zhao Y. Chem Soc Rev, 2018, 47: 5491–5528

    Article  CAS  PubMed  Google Scholar 

  35. Ke H, Yang LP, Xie M, Chen Z, Yao H, Jiang W. Nat Chem, 2019, 11: 470–477

    Article  CAS  PubMed  Google Scholar 

  36. Ajayaghosh A, Chithra P, Varghese R. Angew Chem Int Ed, 2007, 46: 230–233

    Article  CAS  Google Scholar 

  37. Liu G, Sheng J, Teo WL, Yang G, Wu H, Li Y, Zhao Y. J Am Chem Soc, 2018, 140: 16275–16283

    Article  CAS  PubMed  Google Scholar 

  38. Wang F, Feng CL. Angew Chem Int Ed, 2018, 57: 5655–5659

    Article  CAS  Google Scholar 

  39. Farley SJ, Rochester DL, Thompson AL, Howard JAK, Williams JAG. Inorg Chem, 2005, 44: 9690–9703

    Article  CAS  PubMed  Google Scholar 

  40. Rausch AF, Murphy L, Williams JAG, Yersin H. Inorg Chem, 2009, 48: 11407–11414

    Article  CAS  PubMed  Google Scholar 

  41. Speight JG. Lange’s Handbook of Chemistry. 16th Ed. New York: McGraw-Hill, 2005

  42. Gao Z, Tian Y, Hsu HK, Han Y, Chan YT, Wang F. CCS Chem, 2021, 3: 105–115

    Article  CAS  Google Scholar 

  43. Levin A, Mason TO, Adler-Abramovich L, Buell AK, Meisl G, Galvagnion C, Bram Y, Stratford SA, Dobson CM, Knowles TPJ, Gazit E. Nat Commun, 2014, 5: 5219

    Article  CAS  PubMed  Google Scholar 

  44. Sorrenti A, Leira-Iglesias J, Markvoort AJ, de Greef TFA, Hermans TM. Chem Soc Rev, 2017, 46: 5476–5490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kato M, Kosuge C, Morii K, Ahn JS, Kitagawa H, Mitani T, Matsushita M, Kato T, Yano S, Kimura M. Inorg Chem, 1999, 38: 1638–1641

    Article  CAS  Google Scholar 

  46. Saito D, Ogawa T, Yoshida M, Takayama J, Hiura S, Murayama A, Kobayashi A, Kato M. Angew Chem Int Ed, 2020, 59: 18723–18730

    Article  CAS  Google Scholar 

  47. Zhou Z, Xiong W, Zhang Y, Yang D, Wang T, Che Y, Zhao J. Anal Chem, 2017, 89: 3814–3818

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (21925112), the National Natural Science Foundation of China (22090021, 21601194, 21872154), and Beijing Natural Science Foundation (2191003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Liang Gong or Yu-Wu Zhong.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11426_2021_1129_MOESM1_ESM.pdf

A Pre-Organized Monomer-Reservoir Strategy to Prepare Multidimensional Phosphorescent Organoplatinum Nanocrystals and Suprastructures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Gong, ZL., Zhu, Q. et al. A pre-organized monomer-reservoir strategy to prepare multidimensional phosphorescent organoplatinum nanocrystals and suprastructures. Sci. China Chem. 65, 328–338 (2022). https://doi.org/10.1007/s11426-021-1129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1129-0

Keywords

Navigation