Skip to main content
Log in

Non-fullerene acceptor pre-aggregates enable high efficiency pseudo-bulk heterojunction organic solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Pseudo-bulk heterojunction (BHJ) fabricated by sequential casting of donor and acceptor layers has been recently demonstrated a superior structure to prepare organic solar cells (OSCs) with enhanced efficiency compared to the conventional BHJ OSCs cast from a common solution of donor and acceptor. However, molecular diffusion and aggregation within the pseudo-BHJ layer bring great challenges to fully realize the advantage of pseudo-BHJ structure. Herein, a solution-incubated pre-aggregation strategy is employed to tune the nanoscale aggregates of non-fullerene acceptor (NFA) BTP-eC11 and N3 to substantially enhance device power-conversion efficiency (PCE). NFA pre-aggregates are incubated in solutions via aging or adding anti-solvent, and then sequentially cast onto D18 fibrillar network, which then penetrate to form a pseudo-BHJ structure with appropriate domain sizes to ensure superior charge mobilities. While the conventional pseudo-BHJ OSCs obtain inferior PCEs below 17% compared with normal BHJ OSCs, NFA pre-aggregates help to achieve remarkable PCEs of 17.7% and 17.5% for D18/BTP-eC11 and D18/N3 pseudo-BHJ OSCs. This work demonstrates that the solution-incubated nanoscale pre-aggregation is an efficient approach to regulate molecular diffusion and aggregation to guarantee high performance pseudo-BHJ OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan J, Zhang H, Zhang R, Wang Y, Hou J, Leclerc M, Zhan X, Huang F, Gao F, Zou Y, Li Y. Chem, 2020, 6: 2147–2161

    Article  CAS  Google Scholar 

  2. Armin A, Li W, Sandberg OJ, Xiao Z, Ding L, Nelson J, Neher D, Vandewal K, Shoaee S, Wang T, Ade H, Heumüller T, Brabec C, Meredith P. Adv Energy Mater, 2021, 11: 2003570

    Article  CAS  Google Scholar 

  3. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Article  CAS  PubMed  Google Scholar 

  4. Gurney RS, Lidzey DG, Wang T. Rep Prog Phys, 2019, 82: 036601

    Article  CAS  PubMed  Google Scholar 

  5. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  PubMed  Google Scholar 

  6. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  7. Ma Y, Zhang M, Wan S, Yin P, Wang P, Cai D, Liu F, Zheng Q. Joule, 2021, 5: 197–209

    Article  CAS  Google Scholar 

  8. Zhang Z, Li Y, Cai G, Zhang Y, Lu X, Lin Y. J Am Chem Soc, 2020, 142: 18741–18745

    Article  CAS  PubMed  Google Scholar 

  9. Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat Energy, 2021, 6: 605–613

    Article  CAS  Google Scholar 

  10. Chen S, Feng L, Jia T, Jing J, Hu Z, Zhang K, Huang F. Sci China Chem, 2021, 64: 1192–1199

    Article  CAS  Google Scholar 

  11. Zhan L, Li S, Xia X, Li Y, Lu X, Zuo L, Shi M, Chen H. Adv Mater, 2021, 33: 2007231

    Article  CAS  Google Scholar 

  12. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272–275

    Article  CAS  Google Scholar 

  13. Yao H, Ye L, Hou J, Jang B, Han G, Cui Y, Su GM, Wang C, Gao B, Yu R, Zhang H, Yi Y, Woo HY, Ade H, Hou J. Adv Mater, 2017, 29: 1700254

    Article  Google Scholar 

  14. Lai H, Zhao Q, Chen Z, Chen H, Chao P, Zhu Y, Lang Y, Zhen N, Mo D, Zhang Y, He F. Joule, 2020, 4: 688–700

    Article  CAS  Google Scholar 

  15. Wang H, Liu T, Zhou J, Mo D, Han L, Lai H, Chen H, Zheng N, Zhu Y, Xie Z, He F. Adv Sci, 2020, 7: 1903784

    Article  CAS  Google Scholar 

  16. Lin B, Zhou X, Zhao H, Yuan J, Zhou K, Chen K, Wu H, Guo R, Scheel MA, Chumakov A, Roth SV, Mao Y, Wang L, Tang Z, Müller-Buschbaum P, Ma W. Energy Environ Sci, 2020, 13: 2467–2479

    Article  CAS  Google Scholar 

  17. Li D, Zhang X, Liu D, Wang T. J Mater Chem A, 2020, 8: 15607–15619

    Article  CAS  Google Scholar 

  18. Gao M, Wang W, Hou J, Ye L. Aggregate, 2021, doi: https://doi.org/10.1002/agt2.46

  19. Zhu W, Spencer AP, Mukherjee S, Alzola JM, Sangwan VK, Amsterdam SH, Swick SM, Jones LO, Heiber MC, Herzing AA, Li G, Stern CL, DeLongchamp DM, Kohlstedt KL, Hersam MC, Schatz GC, Wasielewski MR, Chen LX, Facchetti A, Marks TJ. J Am Chem Soc, 2020, 142: 14532–14547

    Article  CAS  PubMed  Google Scholar 

  20. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  21. Zhou K, Xin J, Ma W. ACS Energy Lett, 2019, 4: 447–455

    Article  CAS  Google Scholar 

  22. Yan Y, Liu X, Wang T. Adv Mater, 2017, 29: 1601674

    Article  Google Scholar 

  23. Li W, Cai J, Yan Y, Cai F, Li S, Gurney RS, Liu D, McGettrick JD, Watson TM, Li Z, Pearson AJ, Lidzey DG, Hou J, Wang T. Sol RRL, 2018, 2: 1800114

    Article  Google Scholar 

  24. Wei Y, Yu J, Qin L, Chen H, Wu X, Wei Z, Zhang X, Xiao Z, Ding L, Gao F, Huang H. Energy Environ Sci, 2021, 14: 2314–2321

    Article  CAS  Google Scholar 

  25. Wang H, Cheng P, Tan S, Chen C, Chang B, Tsao C, Chen L, Hsieh C, Lin Y, Cheng H, Yang Y, Wei K. Adv Energy Mater, 2021, 11: 2003576

    Article  CAS  Google Scholar 

  26. Sun R, Guo J, Sun C, Wang T, Luo Z, Zhang Z, Jiao X, Tang W, Yang C, Li Y, Min J. Energy Environ Sci, 2019, 12: 384–395

    Article  CAS  Google Scholar 

  27. Jiang K, Zhang J, Peng Z, Lin F, Wu S, Li Z, Chen Y, Yan H, Ade H, Zhu Z, Jen AKY. Nat Commun, 2021, 12: 468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wan J, Zhang L, He Q, Liu S, Huang B, Hu L, Zhou W, Chen Y. Adv Funct Mater, 2020, 30: 1909760

    Article  CAS  Google Scholar 

  29. Fu H, Gao W, Li Y, Lin F, Wu X, Son JH, Luo J, Woo HY, Zhu Z, Jen AK. Small Methods, 2020, 4: 2000687

    Article  CAS  Google Scholar 

  30. Mao Y, Guo C, Li D, Li W, Du B, Chen M, Wang Y, Liu D, Wang T. ACS Appl Mater Interfaces, 2019, 11: 35827–35834

    Article  CAS  PubMed  Google Scholar 

  31. Zhu L, Zhang M, Zhou G, Hao T, Xu J, Wang J, Qiu C, Prine N, Ali J, Feng W, Gu X, Ma Z, Tang Z, Zhu H, Ying L, Zhang Y, Liu F. Adv Energy Mater, 2020, 10: 1904234

    Article  CAS  Google Scholar 

  32. S. Gurney R, Li W, Yan Y, Liu D, J. Pearson A, Wang T. J Energy Chem, 2019, 37: 148–156

    Article  Google Scholar 

  33. Yu R, Yao H, Chen Z, Xin J, Hong L, Xu Y, Zu Y, Ma W, Hou J. Adv Mater, 2019, 31: 1900477

    Article  Google Scholar 

  34. Zhang X, Wang H, Li D, Chen M, Mao Y, Du B, Zhuang Y, Tan W, Huang W, Zhao Y, Liu D, Wang T. Macromolecules, 2020, 53: 3747–3755

    Article  CAS  Google Scholar 

  35. Cai J, Wang H, Zhang X, Li W, Li D, Mao Y, Du B, Chen M, Zhuang Y, Liu D, Qin HL, Zhao Y, Smith JA, Kilbride RC, Parnell AJ, Jones RAL, Lidzey DG, Wang T. J Mater Chem A, 2020, 8: 4230–4238

    Article  CAS  Google Scholar 

  36. Li W, Chen M, Cai J, Spooner ELK, Zhang H, Gurney RS, Liu D, Xiao Z, Lidzey DG, Ding L, Wang T. Joule, 2019, 3: 819–833

    Article  CAS  Google Scholar 

  37. Li W, Chen M, Zhang Z, Cai J, Zhang H, Gurney RS, Liu D, Yu J, Tang W, Wang T. Adv Funct Mater, 2018, 29: 1807662

    Article  Google Scholar 

  38. Du B, Geng R, Tan W, Mao Y, Li D, Zhang X, Liu D, Tang W, Huang W, Wang T. J Energy Chem, 2021, 54: 131–137

    Article  Google Scholar 

  39. Chen M, Zhang Z, Li W, Cai J, Yu J, Spooner ELK, Kilbride RC, Li D, Du B, Gurney RS, Liu D, Tang W, Lidzey DG, Wang T. Sci China Chem, 2019, 62: 1221–1229

    Article  CAS  Google Scholar 

  40. Yu Y, Sun R, Wang T, Yuan X, Wu Y, Wu Q, Shi M, Yang W, Jiao X, Min J. Adv Funct Mater, 2021, 31: 2008767

    Article  CAS  Google Scholar 

  41. Xu X, Yu L, Yan H, Li R, Peng Q. Energy Environ Sci, 2020, 13: 4381–4388

    Article  CAS  Google Scholar 

  42. Li D, Guo C, Zhang X, Du B, Wang P, Cheng S, Cai J, Wang H, Liu D, Yao H, Hou J, Wang T. Aggregate, 2021, doi: https://doi.org/10.1002/agt2.104

  43. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205

    Article  CAS  Google Scholar 

  44. Jiang K, Wei Q, Lai JYL, Peng Z, Kim HK, Yuan J, Ye L, Ade H, Zou Y, Yan H. Joule, 2019, 3: 3020–3033

    Article  CAS  Google Scholar 

  45. Zhang Y, Liu K, Huang J, Xia X, Cao J, Zhao G, Fong PWK, Zhu Y, Yan F, Yang Y, Lu X, Li G. Nat Commun, 2021, 12: 4815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiao Y, Lu X. Mater Today Nano, 2019, 5: 100030

    Article  Google Scholar 

  47. Dai S, Li T, Wang W, Xiao Y, Lau TK, Li Z, Liu K, Lu X, Zhan X. Adv Mater, 2018, 30: 1706571

    Article  Google Scholar 

  48. Pedersen JS, Schurtenberger P. Macromolecules, 1996, 29: 7602–7612

    Article  CAS  Google Scholar 

  49. Xi Y, Wolf CM, Pozzo LD. Soft Matter, 2019, 15: 1799–1812

    Article  CAS  PubMed  Google Scholar 

  50. Du B, Geng R, Li W, Li D, Mao Y, Chen M, Zhang X, Smith JA, Kilbride RC, O’Kane ME, Liu D, Lidzey DG, Tang W, Wang T. ACS Energy Lett, 2019, 4: 2378–2385

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52073221, 21774097) and the Fundamental Research Funds for the Central Universities (WUT: 2021III016JC, 2020-YB-004) of China. We thank beamline BL14B1 and BL16B1 at Shanghai Synchrotron Radiation Facility (China) for providing beam times to perform GIWAXS and GISAXS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhui Hou or Tao Wang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Guo, C., Zhang, X. et al. Non-fullerene acceptor pre-aggregates enable high efficiency pseudo-bulk heterojunction organic solar cells. Sci. China Chem. 65, 373–381 (2022). https://doi.org/10.1007/s11426-021-1128-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1128-1

Navigation