Skip to main content

Electrochemical hydrogen-storage capacity of graphene can achieve a carbon-hydrogen atomic ratio of 1:1

Abstract

As a promising hydrogen-storage material, graphene is expected to have a theoretical capacity of 7.7 wt%, which means a carbon-hydrogen atomic ratio of 1:1. However, it hasn’t been demonstrated yet by experiment, and the aim of the U.S. Department of Energy is to achieve 5.5 wt% in 2025. We designed a spatially-confined electrochemical system and found the storage capacity of hydrogen adatoms on single layer graphene (SLG) is as high as 7.3 wt%, which indicates a carbon-hydrogen atomic ratio of 1:1 by considering the sp3 defects of SLG. First, SLG was deposited on a large-area polycrystalline platinum (Pt) foil by chemical vapor deposition (CVD); then, a micropipette with reference electrode, counter electrode and electrolyte solution inside was impacted on the SLG/Pt foil (the working electrode) to construct spatially-confined electrochemical system. The SLG-uncovered Pt atoms act as the catalytic sites to convert protons (H+) to hydrogen adatoms (Had), which then spill over and are chemically adsorbed on SLG through surface diffusion during the cathodic scan. Because the electrode processes are reversible, the Had amount can be measured by the anodic stripping charge. This is the first experimental evidence for the theoretically expected hydrogen-storage capacity on graphene at ambient environment, especially by using H+ rather than hydrogen gas (H2) as hydrogen source, which is of significance for the practical utilization of hydrogen energy.

This is a preview of subscription content, access via your institution.

References

  1. Jena P. J Phys Chem Lett, 2011, 2: 206–211

    Article  CAS  Google Scholar 

  2. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V. Science, 2015, 347: 1246501

    Article  Google Scholar 

  3. Subrahmanyam KS, Kumar P, Maitra U, Govindaraj A, Hembram KPSS, Waghmare UV, Rao CNR. Proc Natl Acad Sci USA, 2011, 108: 2674–2677

    Article  CAS  Google Scholar 

  4. Pumera M. Energy Environ Sci, 2011, 4: 668–674

    Article  CAS  Google Scholar 

  5. Tozzini V, Pellegrini V. Phys Chem Chem Phys, 2013, 15: 80–89

    Article  CAS  Google Scholar 

  6. Arellano JS, Molina LM, Rubio A, Alonso JA. J Chem Phys, 2000, 112: 8114–8119

    Article  CAS  Google Scholar 

  7. Singh AK, Ribas MA, Yakobson BI. ACS Nano, 2009, 3: 1657–1662

    Article  CAS  Google Scholar 

  8. Lin Y, Ding F, Yakobson BI. Phys Rev B, 2008, 78: 041402

    Article  Google Scholar 

  9. Sofo JO, Chaudhari AS, Barber GD. Phys Rev B, 2007, 75: 153401

    Article  Google Scholar 

  10. Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A, Pati SK, Rao CNR. J Phys Chem C, 2008, 112: 15704–15707

    Article  CAS  Google Scholar 

  11. Wang L, Yang RT. Energy Environ Sci, 2008, 1: 268–279

    Article  CAS  Google Scholar 

  12. Wu HY, Fan X, Kuo JL, Deng WQ. J Phys Chem C, 2011, 115: 9241–9249

    Article  CAS  Google Scholar 

  13. Psofogiannakis GM, Froudakis GE. J Phys Chem C, 2009, 113: 14908–14915

    Article  CAS  Google Scholar 

  14. Li Q, Lueking AD. J Phys Chem C, 2011, 115: 4273–4282

    Article  CAS  Google Scholar 

  15. Prins R. Chem Rev, 2012, 112: 2714–2738

    Article  CAS  Google Scholar 

  16. Conner Jr. WC, Falconer JL. Chem Rev, 1995, 95: 759–788

    Article  CAS  Google Scholar 

  17. Parambhath VB, Nagar R, Sethupathi K, Ramaprabhu S. J Phys Chem C, 2011, 115: 15679–15685

    Article  CAS  Google Scholar 

  18. Zhou C, Szpunar JA, Cui X. ACS Appl Mater Interfaces, 2016, 8: 15232–15241

    Article  CAS  Google Scholar 

  19. Cho ES, Ruminski AM, Aloni S, Liu YS, Guo J, Urban JJ. Nat Commun, 2016, 7: 10804

    Article  CAS  Google Scholar 

  20. Kumar R, Oh JH, Kim HJ, Jung JH, Jung CH, Hong WG, Kim HJ, Park JY, Oh IK. ACS Nano, 2015, 9: 7343–7351

    Article  CAS  Google Scholar 

  21. Zhou C, Szpunar JA. ACS Appl Mater Interfaces, 2016, 8: 25933–25940

    Article  CAS  Google Scholar 

  22. Baburin IA, Klechikov A, Mercier G, Talyzin A, Seifert G. Int J Hydrogen Energy, 2015, 40: 6594–6599

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (21827802, 22021001), and the 111 Project (B08027, B17027) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianhuan Han, Yuan-Zhi Tan or Dongping Zhan.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Zeng, L., Han, L. et al. Electrochemical hydrogen-storage capacity of graphene can achieve a carbon-hydrogen atomic ratio of 1:1. Sci. China Chem. 65, 318–321 (2022). https://doi.org/10.1007/s11426-021-1127-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1127-1

Keywords