Skip to main content
Log in

The helicity of Raman scattered light: principles and applications in two-dimensional materials

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Raman spectroscopy has been not only a technique for characterizing the composition and lattice structure of materials, but also a platform to explore the electron-photon and electron-phonon couplings. When excited by circularly polarized light, the Raman scattered light can carry a spin angular momentum ±ħ, which adds a new degree of freedom to study the Raman scattering process. This review explains the principles of the helicity of Raman scattered light excited by circular polarization, and introduces the recent advances in the fundamentals and applications of helicity-resolved Raman scattering in two dimensional (2D) materials, including the assignment of overlapped Raman modes, the characterization of exciton-phonon coupling and the application in chiral optics. We hope that this review will give a comprehensive understanding of the helicity selection rule in the Raman scattering process and inspire more exploration on the applications of the helicity of Raman scattered light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loudon R. Adv Phys, 2001, 50: 813–864

    Article  Google Scholar 

  2. Tanaka M, Young RJ. J Mater Sci, 2006, 41: 963–991

    Article  CAS  Google Scholar 

  3. Zhang S, Zhang N, Zhao Y, Cheng T, Li X, Feng R, Xu H, Liu Z, Zhang J, Tong L. Chem Soc Rev, 2018, 47: 3217–3240

    Article  CAS  PubMed  Google Scholar 

  4. Zhang X, Qiao XF, Shi W, Wu JB, Jiang DS, Tan PH. Chem Soc Rev, 2015, 44: 2757–2785

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Tan QH, Wu JB, Shi W, Tan PH. Nanoscale, 2016, 8: 6435–6450

    Article  CAS  PubMed  Google Scholar 

  6. Kim J, Lee JU, Cheong H. J Phys-Condens Matter, 2020, 32: 343001

    Article  CAS  PubMed  Google Scholar 

  7. Wu J, Mao N, Xie L, Xu H, Zhang J. Angew Chem Int Ed, 2015, 54: 2366–2369

    Article  CAS  Google Scholar 

  8. Zhu M, Zhao Y, Feng Q, Lu H, Zhang S, Zhang N, Ma C, Li J, Zheng J, Zhang J, Xu H, Zhai T, Zhao J. Small, 2019, 15: 1903159

    Article  CAS  Google Scholar 

  9. Cao S, Ma W, Zhai G, Xie Z, Gao X, Zhao Y, Ma X, Tong L, Jia S, Chen JH. J Phys-Condens Matter, 2020, 32: 12LT01

    Article  CAS  PubMed  Google Scholar 

  10. Huang M, Yan H, Chen C, Song D, Heinz TF, Hone J. Proc Natl Acad Sci USA, 2009, 106: 7304–7308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee JU, Woo S, Park J, Park HC, Son YW, Cheong H. Nat Commun, 2017, 8: 1370

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lan Y, Zondode M, Deng H, Yan JA, Ndaw M, Lisfi A, Wang C, Pan YL. Crystals, 2018, 8: 375–428

    Article  Google Scholar 

  13. Tatsumi Y, Kaneko T, Saito R. Phys Rev B, 2018, 97: 195444

    Article  CAS  Google Scholar 

  14. Chen SY, Zheng C, Fuhrer MS, Yan J. Nano Lett, 2015, 15: 2526–2532

    Article  CAS  PubMed  Google Scholar 

  15. Drapcho SG, Kim J, Hong X, Jin C, Shi S, Tongay S, Wu J, Wang F. Phys Rev B, 2017, 95: 165417

    Article  Google Scholar 

  16. Miller B, Lindlau J, Bommert M, Neumann A, Yamaguchi H, Holleitner A, Högele A, Wurstbauer U. Nat Commun, 2019, 10: 807

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhao Y, Zhang S, Shi Y, Zhang Y, Saito R, Zhang J, Tong L. ACS Nano, 2020, 14: 10527–10535

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Han S, Zhang J, Tong L. J Raman Spectrosc, 2021, 52: 525–531

    Article  CAS  Google Scholar 

  19. Kim S, Kim K, Lee JU, Cheong H. 2D Mater, 2017, 4: 045002

    Article  Google Scholar 

  20. Lan W, Wang J, Xin M, Huang Y, Gu C, Liu B. Appl Phys Lett, 2020, 117: 083107

    Article  CAS  Google Scholar 

  21. Xu B, Xu S, Zhao Y, Zhang S, Feng R, Zhang J, Tong L. J Phys Chem C, 2021, 125: 8353–8359

    Article  CAS  Google Scholar 

  22. Zhang Y, Wu X, Lyu BB, Wu M, Zhao S, Chen J, Jia M, Zhang C, Wang L, Wang X, Chen Y, Mei J, Taniguchi T, Watanabe K, Yan H, Liu Q, Huang L, Zhao Y, Huang M. Nano Lett, 2020, 20: 729–734

    Article  CAS  PubMed  Google Scholar 

  23. Guo Q, Fu T, Tang J, Pan D, Zhang S, Xu H. Phys Rev Lett, 2019, 123: 183903

    Article  CAS  PubMed  Google Scholar 

  24. Ribeiro-Soares J, Almeida RM, Barros EB, Araujo PT, Dresselhaus MS, Cançado LG, Jorio A. Phys Rev B, 2014, 90: 115438

    Article  Google Scholar 

  25. Tsuboi M, Benevides JM, Thomas George J. J. Proc Jpn Acad Ser B, 2009, 85: 83–97

    Article  CAS  Google Scholar 

  26. Saito R, Tatsumi Y, Huang S, Ling X, Dresselhaus MS. J Phys-Condens Matter, 2016, 28: 353002

    Article  CAS  PubMed  Google Scholar 

  27. Tatsumi Y, Saito R. Phys Rev B, 2018, 97: 115407

    Article  CAS  Google Scholar 

  28. Zhang L, Niu Q. Phys Rev Lett, 2015, 115: 115502

    Article  PubMed  Google Scholar 

  29. Chen H, Zhang W, Niu Q, Zhang L. 2D Mater, 2019, 6: 012002

    Article  CAS  Google Scholar 

  30. Zhu H, Yi J, Li MY, Xiao J, Zhang L, Yang CW, Kaindl RA, Li LJ, Wang Y, Zhang X. Science, 2018, 359: 579–582

    Article  CAS  PubMed  Google Scholar 

  31. Du L, Tang J, Zhao Y, Li X, Yang R, Hu X, Bai X, Wang X, Watanabe K, Taniguchi T, Shi D, Yu G, Bai X, Hasan T, Zhang G, Sun Z. Adv Funct Mater, 2019, 29: 1904734

    Article  CAS  Google Scholar 

  32. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666–669

    Article  CAS  PubMed  Google Scholar 

  33. Geim AK, Novoselov KS. Nat Mater, 2007, 6: 183–191

    Article  CAS  PubMed  Google Scholar 

  34. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Phys Rev Lett, 2006, 97: 187401

    Article  CAS  PubMed  Google Scholar 

  35. Ferrari AC, Basko DM. Nat Nanotech, 2013, 8: 235–246

    Article  CAS  Google Scholar 

  36. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS. Phys Rep, 2009, 473: 51–87

    Article  CAS  Google Scholar 

  37. Chen C, Chen X, Deng B, Watanabe K, Taniguchi T, Huang S, Xia F. Phys Rev B, 2021, 103: 035405

    Article  CAS  Google Scholar 

  38. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. Nat Rev Mater, 2017, 2: 17033

    Article  CAS  Google Scholar 

  39. Coehoorn R, Haas C, Dijkstra J, Flipse CJ, de Groot R A, Wold A. Phys Rev B, 1987, 35: 6195–6202

    Article  CAS  Google Scholar 

  40. Lui CH, Mak KF, Shan J, Heinz TF. Phys Rev Lett, 2010, 105: 127404

    Article  PubMed  Google Scholar 

  41. Wieting TJ, Verble JL. Phys Rev B, 1971, 3: 4286–4292

    Article  Google Scholar 

  42. Molina-Sánchez A, Wirtz L. Phys Rev B, 2011, 84: 155413

    Article  Google Scholar 

  43. Liang L, Zhang J, Sumpter BG, Tan QH, Tan PH, Meunier V. ACS Nano, 2017, 11: 11777–11802

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, Luo X, Li H, Zhang J, Araujo PT, Gan CK, Wu J, Zhang H, Quek SY, Dresselhaus MS, Xiong Q. Nano Lett, 2013, 13: 1007–1015

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, Han WP, Wu JB, Milana S, Lu Y, Li QQ, Ferrari AC, Tan PH. Phys Rev B, 2013, 87: 115413

    Article  Google Scholar 

  46. Yoshikawa N, Tani S, Tanaka K. Phys Rev B, 2017, 95: 115419

    Article  Google Scholar 

  47. Jadczak J, Bryja L, Kutrowska-Girzycka J, Kapuściński P, Bieniek M, Huang YS, Hawrylak P. Nat Commun, 2019, 10: 107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saigal N, Wielert I, Čapeta D, Vujičić N, Senkovskiy BV, Hell M, Kralj M, Grüneis A. Appl Phys Lett, 2018, 112: 121902

    Article  Google Scholar 

  49. Kung HH, Baumbach RE, Bauer ED, Thorsmølle VK, Zhang WL, Haule K, Mydosh JA, Blumberg G. Science, 2015, 347: 1339–1342

    Article  CAS  PubMed  Google Scholar 

  50. Grzeszczyk M, Molas MR, Bartoš M, Nogajewski K, Potemski M, Babiński A. Appl Phys Lett, 2020, 116: 191601

    Article  CAS  Google Scholar 

  51. Jadczak J, Delgado A, Bryja L, Huang YS, Hawrylak P. Phys Rev B, 2017, 95: 195427

    Article  Google Scholar 

  52. Li Z, Young RJ, Wilson NR, Kinloch IA, Vallés C, Li Z. Compos Sci Tech, 2016, 123: 125–133

    Article  CAS  Google Scholar 

  53. Xu S, Wang S, Chen Z, Sun Y, Gao Z, Zhang H, Zhang J. Adv Funct Mater, 2020, 30: 2003302

    Article  CAS  Google Scholar 

  54. Mao N, Zhang S, Wu J, Zhang J, Tong L. Small Methods, 2018, 2: 1700409

    Article  Google Scholar 

  55. Zhao Y, Sun Y, Bai M, Xu S, Wu H, Han J, Yin H, Guo C, Chen Q, Chai Y, Guo Y. J Phys Chem C, 2020, 124: 11092–11099

    Article  CAS  Google Scholar 

  56. Martin RM, Damen TC. Phys Rev Lett, 1971, 26: 86–88

    Article  CAS  Google Scholar 

  57. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F. Nano Lett, 2010, 10: 1271–1275

    Article  CAS  PubMed  Google Scholar 

  58. Mak KF, Lee C, Hone J, Shan J, Heinz TF. Phys Rev Lett, 2010, 105: 136805

    Article  PubMed  Google Scholar 

  59. Tan QH, Sun YJ, Liu XL, Xu KX, Gao YF, Ren SL, Tan PH, Zhang J. Nano Res, 2021, 14: 239–244

    Article  CAS  Google Scholar 

  60. Bardeen J, Shockley W. Phys Rev, 1950, 80: 72–80

    Article  CAS  Google Scholar 

  61. Frohlich H. Proc R Soc Lond A, 1952, 215: 291–298

    Article  CAS  Google Scholar 

  62. Cantarero A, Trallero-Giner C, Cardona M. Phys Rev B, 1989, 40: 12290–12295

    Article  CAS  Google Scholar 

  63. Trallero-Giner C, Cantarero A, Cardona M. Phys Rev B, 1989, 40: 4030–4036

    Article  CAS  Google Scholar 

  64. Cantarero A, Trallero-Giner C, Cardona M. Phys Rev B, 1989, 39: 8388–8397

    Article  CAS  Google Scholar 

  65. Martin RM. Phys Rev B, 1971, 4: 3676–3685

    Article  Google Scholar 

  66. Chen C, Chen X, Yu H, Shao Y, Guo Q, Deng B, Lee S, Ma C, Watanabe K, Taniguchi T, Park JG, Huang S, Yao W, Xia F. ACS Nano, 2019, 13: 552–559

    Article  CAS  PubMed  Google Scholar 

  67. Liu Z, Guo K, Hu G, Shi Z, Li Y, Zhang L, Chen H, Zhang L, Zhou P, Lu H, Lin ML, Liu S, Cheng Y, Liu XL, Xie J, Bi L, Tan PH, Deng L, Qiu CW, Peng B. Sci Adv, 2020, 6: eabc7628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cenker J, Huang B, Suri N, Thijssen P, Miller A, Song T, Taniguchi T, Watanabe K, McGuire MA, Xiao D, Xu X. Nat Phys, 2021, 17: 20–25

    Article  CAS  Google Scholar 

  69. Tian Y, Gray MJ, Ji H, Cava RJ, Burch KS. 2D Mater, 2016, 3: 025035

    Article  Google Scholar 

  70. Milosavljević A, Šolajić A, Pešić J, Liu Y, Petrovic C, Lazarević N, Popović ZV. Phys Rev B, 2018, 98: 104306

    Article  Google Scholar 

  71. Popović ZV, Lazarević N, Bogdanović S, Radonjić MM, Tanasković D, Hu R, Lei H, Petrovic C. Solid State Commun, 2014, 193: 51–55

    Article  Google Scholar 

  72. Huang YL, Chen W, Wee ATS. SmartMat, 2021, 2: 139–153

    Article  Google Scholar 

  73. Huang B, Cenker J, Zhang X, Ray EL, Song T, Taniguchi T, Watanabe K, McGuire MA, Xiao D, Xu X. Nat Nanotechnol, 2020, 15: 212–216

    Article  CAS  PubMed  Google Scholar 

  74. Lyu BB, Gao YF, Zhang Y, Wang L, Wu X, Chen Y, Zhang J, Li G, Huang Q, Zhang N, Chen Y, Mei J, Yan H, Zhao Y, Huang L, Huang M. Nano Lett, 2020, 20: 6024–6031

    Article  CAS  PubMed  Google Scholar 

  75. Yu T, Wu MW. Phys Rev B, 2014, 89: 205303

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2016YFA0200100, 2018YFA0703502), the National Natural Science Foundation of China (52021006, 51720105003, 21790052, 21974004), Beijing National Laboratory for Molecular Sciences (BNLMS-CXTD-202001) and the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36030100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianming Tong or Jin Zhang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Xu, B., Tong, L. et al. The helicity of Raman scattered light: principles and applications in two-dimensional materials. Sci. China Chem. 65, 269–283 (2022). https://doi.org/10.1007/s11426-021-1119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1119-4

Keywords

Navigation