Skip to main content
Log in

Improving photovoltaic parameters of all-polymer solar cells through integrating two polymeric donors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The incorporation of an additional component into the bulk-heterojunction light-harvesting layer of polymer solar cells has been considered as an effective strategy to enhance photovoltaic performance. Here we demonstrated that the photovoltaic parameters of all-polymer solar cells could be enhanced upon replacing a certain ratio of electron-donating polymer PTzBI-oF with a widely used wide-bandgap polymer donor PM6. The photoluminescent characterizations confirmed the Förster resonance energy transfer from incorporated PM6 to PTzBI-oF. Moreover, the combination of Fourier-transform photocurrent spectroscopy and electroluminescence external quantum efficiencies measurements demonstrated reduced non-radiative recombination energy loss upon the incorporation of PM6, resulting in a slightly enhanced open-circuit voltage of 0.88 V of the ternary cell regarding the binary PTzBI-oF:PFA1 device. The optimized ternary blend devices comprising of PTzBI-oF:PM6:PFA1 presented an impressively high power conversion efficiency of 16.3%, and the efficiency remains 15% on a device with an enlarged effective area of 1 cm2, demonstrating the great potential of these all-PSCs for potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li T, Wu Y, Zhou J, Li M, Wu J, Hu Q, Jia B, Pan X, Zhang M, Tang Z, Xie Z, Russell TP, Zhan X. J Am Chem Soc, 2020, 142: 20124–20133

    Article  CAS  PubMed  Google Scholar 

  2. Yu ZP, Liu ZX, Chen FX, Qin R, Lau TK, Yin JL, Kong X, Lu X, Shi M, Li CZ, Chen H. Nat Commun, 2019, 10: 2152

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang D, Fan B, Ying L, Li N, Brabec CJ, Huang F, Cao Y. Susmat, 2021, 1: 4–23

    Article  Google Scholar 

  4. Sun H, Tang Y, Koh CW, Ling S, Wang R, Yang K, Yu J, Shi Y, Wang Y, Woo HY, Guo X. Adv Mater, 2019, 31: 1807220

    Article  Google Scholar 

  5. Dai S, Zhou J, Chandrabose S, Shi Y, Han G, Chen K, Xin J, Liu K, Chen Z, Xie Z, Ma W, Yi Y, Jiang L, Hodgkiss JM, Zhan X. Adv Mater, 2020, 32: 2000645

    Article  CAS  Google Scholar 

  6. Li MJ, Fan BB, Zhong WK, Zeng ZMY, Xu JK, Ying L. Chin J Polym Sci, 2020, 38: 791–796

    Article  CAS  Google Scholar 

  7. Li Z, Ying L, Zhu P, Zhong W, Li N, Liu F, Huang F, Cao Y. Energy Environ Sci, 2019, 12: 157–163

    Article  CAS  Google Scholar 

  8. Li Y, Meng H, Liu T, Xiao Y, Tang Z, Pang B, Li Y, Xiang Y, Zhang G, Lu X, Yu G, Yan H, Zhan C, Huang J, Yao J. Adv Mater, 2019, 31: 1904585

    Article  CAS  Google Scholar 

  9. Li ZY, Zhong WK, Ying L, Li N, Liu F, Huang F, Cao Y. Chin J Polym Sci, 2020, 38: 323–331

    Article  CAS  Google Scholar 

  10. Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56: 13503–13507

    Article  CAS  Google Scholar 

  11. Fan Q, An Q, Lin Y, Xia Y, Li Q, Zhang M, Su W, Peng W, Zhang C, Liu F, Hou L, Zhu W, Yu D, Xiao M, Moons E, Zhang F, Anthopoulos TD, Inganäs O, Wang E. Energy Environ Sci, 2020, 13: 5017–5027

    Article  CAS  Google Scholar 

  12. Jia T, Zhang J, Zhong W, Liang Y, Zhang K, Dong S, Ying L, Liu F, Wang X, Huang F, Cao Y. Nano Energy, 2020, 72: 104718

    Article  CAS  Google Scholar 

  13. Zhang ZG, Li Y. Angew Chem Int Ed, 2021, 60: 4422–4433

    Article  CAS  Google Scholar 

  14. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  15. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    Article  CAS  Google Scholar 

  16. Chen S, Feng L, Jia T, Jing J, Hu Z, Zhang K, Huang F. Sci China Chem, 2021, 64: 1192–1199

    Article  CAS  Google Scholar 

  17. Li Z, Fan B, He B, Ying L, Zhong W, Liu F, Huang F, Cao Y. Sci China Chem, 2018, 61: 427–436

    Article  Google Scholar 

  18. Li Z, Xu X, Zhang W, Meng X, Ma W, Yartsev A, Inganäs O, Andersson MR, Janssen RAJ, Wang E. J Am Chem Soc, 2016, 138: 10935–10944

    Article  CAS  PubMed  Google Scholar 

  19. Liu T, Yang T, Ma R, Zhan L, Luo Z, Zhang G, Li Y, Gao K, Xiao Y, Yu J, Zou X, Sun H, Zhang M, Dela Peña TA, Xing Z, Liu H, Li X, Li G, Huang J, Duan C, Wong KS, Lu X, Guo X, Gao F, Chen H, Huang F, Li Y, Li Y, Cao Y, Tang B, Yan H. Joule, 2021, 5: 914–930

    Article  CAS  Google Scholar 

  20. Sun R, Wang W, Yu H, Chen Z, Xia XX, Shen H, Guo J, Shi M, Zheng Y, Wu Y, Yang W, Wang T, Wu Q, Yang YM, Lu X, Xia J, Brabec CJ, Yan H, Li Y, Min J. Joule, 2021, 5: 1548–1565

    Article  CAS  Google Scholar 

  21. Fan B, Zhu P, Xin J, Li N, Ying L, Zhong W, Li Z, Ma W, Huang F, Cao Y. Adv Energy Mater, 2018, 8: 1703085

    Article  Google Scholar 

  22. Fan B, Zhong W, Ying L, Zhang D, Li M, Lin Y, Xia R, Liu F, Yip HL, Li N, Ma Y, Brabec CJ, Huang F, Cao Y. Nat Commun, 2019, 10: 4100

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhong W, Hu Q, Ying L, Jiang Y, Li K, Zeng Z, Liu F, Wang C, Russell TP, Huang F, Cao Y. Sol RRL, 2020, 4: 2000148

    Article  CAS  Google Scholar 

  24. Li Z, Xie R, Zhong W, Fan B, Ali J, Ying L, Liu F, Li N, Huang F, Cao Y. Sol RRL, 2018, 2: 1800196

    Article  Google Scholar 

  25. Peng F, An K, Zhong W, Li Z, Ying L, Li N, Huang Z, Zhu C, Fan B, Huang F, Cao Y. ACS Energy Lett, 2020, 5: 3702–3707

    Article  CAS  Google Scholar 

  26. Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655–4660

    Article  CAS  PubMed  Google Scholar 

  27. Li Z, Ying L, Xie R, Zhu P, Li N, Zhong W, Huang F, Cao Y. Nano Energy, 2018, 51: 434–441

    Article  CAS  Google Scholar 

  28. Huang F, Wu H, Wang D, Yang W, Cao Y. Chem Mater, 2004, 16: 708–716

    Article  CAS  Google Scholar 

  29. Kirchartz T, Pieters BE, Kirkpatrick J, Rau U, Nelson J. Phys Rev B, 2011, 83: 115209

    Article  Google Scholar 

  30. Proctor CM, Kuik M, Nguyen TQ. Prog Polym Sci, 2013, 38: 1941–1960

    Article  CAS  Google Scholar 

  31. Huang JS, Goh T, Li X, Sfeir MY, Bielinski EA, Tomasulo S, Lee ML, Hazari N, Taylor AD. Nat Photon, 2013, 7: 479–485

    Article  CAS  Google Scholar 

  32. Liu T, Ma R, Luo Z, Guo Y, Zhang G, Xiao Y, Yang T, Chen Y, Li G, Yi Y, Lu X, Yan H, Tang B. Energy Environ Sci, 2020, 13: 2115–2123

    Article  CAS  Google Scholar 

  33. Li Z, Gao F, Greenham NC, McNeill CR. Adv Funct Mater, 2011, 21: 1419–1431

    Article  CAS  Google Scholar 

  34. Gasparini N, Jiao X, Heumueller T, Baran D, Matt GJ, Fladischer S, Spiecker E, Ade H, Brabec CJ, Ameri T. Nat Energy, 2016, 1: 16118

    Article  CAS  Google Scholar 

  35. Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM. Appl Phys Lett, 2005, 86: 123509

    Article  Google Scholar 

  36. Koster LJA, Mihailetchi VD, Blom PWM. Appl Phys Lett, 2006, 88: 052104

    Article  Google Scholar 

  37. Yao J, Kirchartz T, Vezie MS, Faist MA, Gong W, He Z, Wu H, Troughton J, Watson T, Bryant D, Nelson J. Phys Rev Appl, 2015, 4: 014020

    Article  Google Scholar 

  38. Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y. Nat Photon, 2020, 14: 300–305

    Article  CAS  Google Scholar 

  39. Zhong W, Hu Q, Jiang Y, Li Y, Chen TL, Ying L, Liu F, Wang C, Liu Y, Huang F, Cao Y, Russell TP. Sol RRL, 2019, 3: 1970073

    Article  Google Scholar 

  40. Rivnay J, Mannsfeld SCB, Miller CE, Salleo A, Toney MF. Chem Rev, 2012, 112: 5488–5519

    Article  CAS  PubMed  Google Scholar 

  41. Cheng P, Bai H, Zawacka NK, Andersen TR, Liu W, Bundgaard E, Jørgensen M, Chen H, Krebs FC, Zhan X. Adv Sci, 2015, 2: 1500096

    Article  Google Scholar 

  42. Fan Q, Fu H, Wu Q, Wu Z, Lin F, Zhu Z, Min J, Woo HY, Jen AK. Angew Chem Int Ed, 2021, 60: 15935–15943

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21822505), Guangdong Natural Science Foundation (2017A030306011, 2019B030302007) and the National Key Research and Development Program of China (2019YFA0705900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ying.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, K., Peng, F., Zhong, W. et al. Improving photovoltaic parameters of all-polymer solar cells through integrating two polymeric donors. Sci. China Chem. 64, 2010–2016 (2021). https://doi.org/10.1007/s11426-021-1078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1078-5

Keywords

Navigation