Skip to main content
Log in

Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electrocatalytic nitric oxide (NO) reduction is a promising strategy to produce ammonia. Developing a facile approach to synthesize efficient catalysts with enhanced NO electroreduction performance is highly desirable. Here, a series of Ru-doped Cu materials are constructed through in situ electroreduction of corresponding metal hydroxides. The optimized Ru0.05Cu0.95 exhibits superior electrocatalytic performance for ammonia synthesis by using NO/Ar (1/4, n/n) as the feedstocks (Faradaic efficiency: 64.9%, yield rate: 17.68 μmol cm−2 h−1), obviously outperforming Cu counterpart (Faradaic efficiency: 33.0%, yield rate: 5.73 μmol cm−2 h−1). Electrochemical in situ Fourier transform infrared (FTIR) spectroscopy and online differential electrochemical mass spectrometry (DEMS) are adopted to detect intermediates and unveil the possible reaction pathway. The downshift of the Cu d-band center induced by Ru doping facilitates the rate-limiting hydrogenation step and decreases the desorption energy of NH3, leading to high Faradaic efficiency and yield of ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu X, Jiao Y, Zheng Y, Qiao SZ. ACS Catal, 2020, 10: 1847–1854

    Article  CAS  Google Scholar 

  2. Rosca V, Duca M, de Groot MT, Koper MTM. Chem Rev, 2009, 109: 2209–2244

    Article  CAS  PubMed  Google Scholar 

  3. Chen JG, Crooks RM, Seefeldt LC, Bren KL, Bullock RM, Darensbourg MY, Holland PL, Hoffman B, Janik MJ, Jones AK, Kanatzidis MG, King P, Lancaster KM, Lymar SV, Pfromm P, Schneider WF, Schrock RR. Science, 2018, 360: eaar6611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Xia L, Wu X, Wang Y, Niu Z, Liu Q, Li T, Shi X, Asiri AM, Sun X. Small Methods, 2019, 3: 1800251

    Article  CAS  Google Scholar 

  5. Li P, Zhou Z, Wang Q, Guo M, Chen S, Low J, Long R, Liu W, Ding P, Wu Y, Xiong Y. J Am Chem Soc, 2020, 142: 12430–12439

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Xia M, Wang H, Huang K, Qian C, Maravelias CT, Ozin GA. Joule, 2018, 2: 1055–1074

    Article  CAS  Google Scholar 

  7. Kandemir T, Schuster ME, Senyshyn A, Behrens M, Schlögl R. Angew Chem Int Ed, 2013, 52: 12723–12726

    Article  CAS  Google Scholar 

  8. Andersen SZ, Čolić V, Yang S, Schwalbe JA, Nielander AC, McEnaney JM, Enemark-Rasmussen K, Baker JG, Singh AR, Rohr BA, Statt MJ, Blair SJ, Mezzavilla S, Kibsgaard J, Vesborg PCK, Cargnello M, Bent SF, Jaramillo TF, Stephens IEL, Nørskov JK, Chorkendorff I. Nature, 2019, 570: 504–508

    Article  CAS  PubMed  Google Scholar 

  9. Choi C, Back S, Kim NY, Lim J, Kim YH, Jung Y. ACS Catal, 2018, 8: 7517–7525

    Article  CAS  Google Scholar 

  10. Wang Y, Shi MM, Bao D, Meng FL, Zhang Q, Zhou YT, Liu KH, Zhang Y, Wang JZ, Chen ZW, Liu DP, Jiang Z, Luo M, Gu L, Zhang QH, Cao XZ, Yao Y, Shao MH, Zhang Y, Zhang XB, Chen JG, Yan JM, Jiang Q. Angew Chem Int Ed, 2019, 58: 9464–9469

    Article  CAS  Google Scholar 

  11. Li C, Wang T, Gong J. Trans Tianjin Univ, 2020, 26: 67–91

    Article  CAS  Google Scholar 

  12. Li J, Chen S, Quan F, Zhan G, Jia F, Ai Z, Zhang L. Chem, 2020, 6: 885–901

    Article  CAS  Google Scholar 

  13. Chen GF, Yuan Y, Jiang H, Ren SY, Ding LX, Ma L, Wu T, Lu J, Wang H. Nat Energy, 2020, 5: 605–613

    Article  CAS  Google Scholar 

  14. Suryanto BHR, Du HL, Wang D, Chen J, Simonov AN, MacFarlane DR. Nat Catal, 2019, 2: 290–296

    Article  CAS  Google Scholar 

  15. Skúlason E, Bligaard T, Gudmundsdóttir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jónsson H, Nørskov JK. Phys Chem Chem Phys, 2012, 14: 1235–1245

    Article  PubMed  Google Scholar 

  16. Dai C, Sun Y, Chen G, Fisher AC, Xu ZJ. Angew Chem Int Ed, 2020, 59: 9418–9422

    Article  CAS  Google Scholar 

  17. Kim DY, Shin D, Heo J, Lim H, Lim JA, Jeong HM, Kim BS, Heo I, Oh I, Lee B, Sharma M, Lim H, Kim H, Kwon Y. ACS Energy Lett, 2020, 5: 3647–3656

    Article  CAS  Google Scholar 

  18. Xu J, Chen G, Guo F, Xie J. Chem Eng J, 2018, 353: 507–518

    Article  CAS  Google Scholar 

  19. Han L, Cai S, Gao M, Hasegawa JY, Wang P, Zhang J, Shi L, Zhang D. Chem Rev, 2019, 119: 10916–10976

    Article  CAS  PubMed  Google Scholar 

  20. Yang M, Yuan H, Wang H, Hu P. Sci China Chem, 2018, 61: 457–467

    Article  CAS  Google Scholar 

  21. Shin Y, Jung Y, Cho CP, Pyo YD, Jang J, Kim G, Kim TM. Chem Eng J, 2020, 381: 122751

    Article  CAS  Google Scholar 

  22. Zhang ZS, Fu XP, Wang WW, Jin Z, Song QS, Jia CJ. Sci China Chem, 2018, 61: 1389–1398

    Article  CAS  Google Scholar 

  23. Kim CH, Qi G, Dahlberg K, Li W. Science, 2010, 327: 1624–1627

    Article  CAS  PubMed  Google Scholar 

  24. Long J, Chen S, Zhang Y, Guo C, Fu X, Deng D, Xiao J. Angew Chem Int Ed, 2020, 59: 9711–9718

    Article  CAS  Google Scholar 

  25. Hollevoet L, Jardali F, Gorbanev Y, Creel J, Bogaerts A, Martens JA. Angew Chem Int Ed, 2020, 59: 23825–23829

    Article  CAS  Google Scholar 

  26. Yu Y, Wang C, Yu Y, Huang Y, Liu C, Lu S, Zhang B. J Mater Chem A, 2020, 8: 19623–19630

    Article  CAS  Google Scholar 

  27. Winter LR, Chen JG. Joule, 2021, 5: 300–315

    Article  CAS  Google Scholar 

  28. Rosca V, Koper MTM. J Phys Chem B, 2005, 109: 16750–16759

    Article  CAS  PubMed  Google Scholar 

  29. Duca M, Figueiredo MC, Climent V, Rodriguez P, Feliu JM, Koper MTM. J Am Chem Soc, 2011, 133: 10928–10939

    Article  CAS  PubMed  Google Scholar 

  30. Yang M, Jiao L, Dong H, Zhou L, Teng C, Yan D, Ye TN, Chen X, Liu Y, Jiang HL. Sci Bull, 2021, 66: 257–264

    Article  CAS  Google Scholar 

  31. Schwartz DT, Muller RH. Surf Sci, 1991, 248: 349–358

    Article  CAS  Google Scholar 

  32. Frost RL. SpectroChim Acta Part A-Mol Biomol Spectr, 2003, 59: 1195–1204

    Article  CAS  Google Scholar 

  33. Platzman I, Brener R, Haick H, Tannenbaum R. J Phys Chem C, 2008, 112: 1101–1108

    Article  CAS  Google Scholar 

  34. Sharma P, Pant S, Dave V, Tak K, Sadhu V, Reddy KR. J MicroBiol Methods, 2019, 160: 107–116

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Zhou W, Jia R, Yu Y, Zhang B. Angew Chem Int Ed, 2020, 59: 5350–5354

    Article  CAS  Google Scholar 

  36. Yu Y, Wang C, Yu Y, Wang Y, Zhang B. Sci China Chem, 2020, 63: 1469–1476

    Article  CAS  Google Scholar 

  37. Panzner G, Egert B, Schmidt HP. Surf Sci, 1985, 151: 400–408

    Article  CAS  Google Scholar 

  38. Severino F, Brito JL, Laine J, Fierro JLG, Agudo AL. J Catal, 1998, 177: 82–95

    Article  CAS  Google Scholar 

  39. Zhou L, Martirez JMP, Finzel J, Zhang C, Swearer DF, Tian S, Robatjazi H, Lou M, Dong L, Henderson L, Christopher P, Carter EA, Nordlander P, Halas NJ. Nat Energy, 2020, 5: 61–70

    Article  CAS  Google Scholar 

  40. Roth C, Goetz M, Fuess H. J Appl Electrochem, 2001, 31: 793–798

    Article  CAS  Google Scholar 

  41. Morgan DJ. Surf Interface Anal, 2015, 47: 1072–1079

    Article  CAS  Google Scholar 

  42. Jia R, Wang Y, Wang C, Ling Y, Yu Y, Zhang B. ACS Catal, 2020, 10: 3533–3540

    Article  CAS  Google Scholar 

  43. Kantcheva M. J Catal, 2001, 204: 479–494

    Article  CAS  Google Scholar 

  44. Wu J, Cheng Y. J Catal, 2006, 237: 393–404

    Article  CAS  Google Scholar 

  45. Liu L, Zhao Q, Liu R, Zhu L. Appl Catal B-Environ, 2019, 252: 198–204

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22071173) and the Natural Science Foundation of Tianjin City (20JCJQJC00050 and 17JCJQJC44700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wang, C., Yang, R. et al. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Sci. China Chem. 64, 1493–1497 (2021). https://doi.org/10.1007/s11426-021-1073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1073-5

Keywords

Navigation