Skip to main content

Bimetallic anchoring catalysis for C-H and C-C activation

Abstract

Following the age of directing group, anchoring catalysis starts coming to the center of the stage. Different from the directing-group strategy that needs a preinstalled directing group in substrates, anchoring catalysis relies on a reversible interaction between a substrate and a catalyst, which then directs metal to activate inert chemical bonds. Such reversible directing effect not only generates good site- and stereo-selectivity as traditional directing groups do but also eliminates the requirement of stoichiometric amounts of directing groups. Among variously reported anchoring catalysis, coordinative bimetallic anchoring catalysis in general displays superior reactivity than others because coordinative bonding not only affords strong interaction of catalysts with substrates but also displays good compatibility with substrates and reaction conditions. In recent years, big progress has been achieved for coordinative bimetallic anchoring catalysis. This review gave a detailed summary of this field, including catalyst development, catalyst types, reaction types and reaction mechanisms.

This is a preview of subscription content, access via your institution.

References

  1. Kakiuchi F, Chatani N. Adv Synthesis Catal, 2003, 345: 1077–1101

    CAS  Google Scholar 

  2. Godula K, Sames D. Science, 2006, 312: 67–72

    CAS  PubMed  Google Scholar 

  3. Yamaguchi J, Yamaguchi AD, Itami K. Angew Chem Int Ed, 2012, 51: 8960–9009

    CAS  Google Scholar 

  4. For selected reviews on C-H activation: Dyker G. Angew Chem Int Ed, 1999, 38: 1698–1712

    Google Scholar 

  5. Ritleng V, Sirlin C, Pfeffer M. Chem Rev, 2002, 102: 1731–1770

    CAS  PubMed  Google Scholar 

  6. Kakiuchi F, Murai S. Acc Chem Res, 2002, 35: 826–834

    CAS  PubMed  Google Scholar 

  7. Seregin IV, Gevorgyan V. Chem Soc Rev, 2007, 36: 1173–1193

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lewis JC, Bergman RG, Ellman JA. Acc Chem Res, 2008, 41: 1013–1025

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Giri R, Shi BF, Engle KM, Maugel N, Yu JQ. Chem Soc Rev, 2009, 38: 3242–3272

    CAS  PubMed  Google Scholar 

  10. Colby DA, Bergman RG, Ellman JA. Chem Rev, 2010, 110: 624–655

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem Soc Rev, 2011, 40: 4740–4761

    CAS  PubMed  Google Scholar 

  12. Yang L, Huang H. Chem Rev, 2015, 115: 3468–3517

    CAS  PubMed  Google Scholar 

  13. Tao P, Jia Y. Sci China Chem, 2016, 59: 1109–1125

    CAS  Google Scholar 

  14. Newton CG, Wang SG, Oliveira CC, Cramer N. Chem Rev, 2017, 117: 8908–8976

    CAS  PubMed  Google Scholar 

  15. Diesel J, Cramer N. ACS Catal, 2019, 9: 9164–9177

    CAS  Google Scholar 

  16. For selected reviews on C-C activation: Jun CH. Chem Soc Rev, 2004, 33: 610–618

    CAS  PubMed  Google Scholar 

  17. Murakami M, Matsuda T. Chem Commun, 2011, 47: 1100–1105

    CAS  Google Scholar 

  18. Chen F, Wang T, Jiao N. Chem Rev, 2014, 114: 8613–8661

    CAS  PubMed  Google Scholar 

  19. Dermenci A, Coe JW, Dong G. Org Chem Front, 2014, 1: 567–581

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Marek I, Masarwa A, Delaye PO, Leibeling M. Angew Chem Int Ed, 2015, 54: 414–429

    CAS  Google Scholar 

  21. Souillart L, Cramer N. Chem Rev, 2015, 115: 9410–9464

    CAS  PubMed  Google Scholar 

  22. Chen PH, Billett BA, Tsukamoto T, Dong G. ACS Catal, 2017, 7: 1340–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Murakami M, Ishida N. Chem Rev, 2021, 121: 264–299

    CAS  PubMed  Google Scholar 

  24. For selected examples on intramolecular C-H activation, see: Ames DE, Opalko A. Tetrahedron, 1984, 40: 1919–1925

    CAS  Google Scholar 

  25. For selected examples on intramolecular C-H activation, see: Echavarren AM. J Am Chem Soc. 2006, 128: 1066–1067

    PubMed  Google Scholar 

  26. For selected examples on intramolecular C-H activation, see: Basolo L, Beccalli EM, Borsini E, Broggini G. Tetrahedron, 2009, 65: 3486–3491

    CAS  Google Scholar 

  27. For selected reviews on directing group, see: Jun CH, Moon CW, Lee DY. Chem EurJ, 2002, 8: 2422–2428

    CAS  Google Scholar 

  28. For selected reviews on directing group, see: Wang J, Chen W, Zuo S, Liu L, Zhang X, Wang J. Angew Chem Int Ed, 2012, 51: 12334–12338

    CAS  Google Scholar 

  29. For selected reviews on directing group, see: Corbet M, De Campo F. Angew Chem Int Ed, 2013, 52: 9896–9898

    CAS  Google Scholar 

  30. For selected reviews on directing group, see: Rouquet G, Chatani N. Angew Chem Int Ed, 2013, 52: 11726–11743

    CAS  Google Scholar 

  31. For selected reviews on directing group, see: Zhang M, Zhang Y, Jie X, Zhao H, Li G, Su W. Org Chem Front, 2014, 1: 843–895

    CAS  Google Scholar 

  32. For selected reviews on directing group, see: Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org Chem Front, 2015, 2: 1107–1295

    CAS  Google Scholar 

  33. For selected reviews on directing group, see: Castro LCM, Chatani N. Chem Lett, 2015, 44: 410–421

    CAS  Google Scholar 

  34. For selected reviews on directing group, see: Wang K, Hu F, Zhang Y, Wang J. Sci China Chem, 2015, 58: 1252–1265

    CAS  Google Scholar 

  35. For selected reviews on directing group, see: Zhu RY, Farmer ME, Chen YQ, Yu JQ. Angew Chem Int Ed, 2016, 55: 10578–10599

    CAS  Google Scholar 

  36. For selected reviews on directing group, see: Zhang L, Fang DC. Org Chem Front, 2017, 4: 1250–1260

    CAS  Google Scholar 

  37. For selected reviews on directing group, see: Rej S, Ano Y, Chatani N. Chem Rev, 2020, 120: 1788–1887

    CAS  PubMed  Google Scholar 

  38. For selected reviews on directing group, see: Ali W, Prakash G, Maiti D. Chem Sci, 2021, 12: 2735–2759

    CAS  PubMed  PubMed Central  Google Scholar 

  39. For selected reviews on directing group, see: Dutta U, Maiti S, Bhattacharya T, Maiti D. Science, 2021, 372: eabd5992

    CAS  PubMed  Google Scholar 

  40. For selected reviews on directing group, see: Suseelan AS, Dutta A, Lahiri GK, Maiti D. Trends Chem, 2021, 3: 188–203

    CAS  Google Scholar 

  41. For selected reviews on directing group, see: Dey A, Sinha SK, Achar TK, Maiti D. Angew Chem Int Ed, 2019, 58: 10820–10843

    CAS  Google Scholar 

  42. For selected reviews see: Wu Y, Shi B. Chin J Org Chem, 2020, 40: 3517–3535

    CAS  Google Scholar 

  43. For selected reviews see: Liao G, Zhang T, Lin ZK, Shi BF. Angew Chem Int Ed, 2020, 59: 19773–19786

    CAS  Google Scholar 

  44. For selected reviews see: Becica J, Dobereiner GE. Org Biomol Chem, 2019, 17: 2055–2069

    CAS  PubMed  Google Scholar 

  45. For selected reviews see: Omann L, Königs CDF, Klare HFT, Oestreich M. Acc Chem Res, 2017, 50: 1258–1269

    CAS  PubMed  Google Scholar 

  46. For selected reviews see: Davis HJ, Phipps RJ. Chem Sci, 2017, 8: 864–877

    CAS  PubMed  Google Scholar 

  47. For selected reviews see: Chen DF, Han ZY, Zhou XL, Gong LZ. Acc Chem Res, 2014, 47: 2365–2377

    CAS  PubMed  Google Scholar 

  48. For selected reviews see: Dong XQ, Zhao Q, Li P, Chen C, Zhang X. Org Chem Front, 2015, 2: 1425–1431

    CAS  Google Scholar 

  49. For selected reviews see: Dydio P, Reek JNH. Chem Sci, 2014, 5: 2135–2145

    CAS  Google Scholar 

  50. For selected reviews see: Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM. Chem Soc Rev, 2014, 43: 1660–1733

    CAS  PubMed  Google Scholar 

  51. For selected reviews see: Tan KL. ACS Catal, 2011, 1: 877–886

    CAS  Google Scholar 

  52. For selected reviews see: Rousseau G, Breit B. Angew Chem Int Ed, 2011, 50: 2450–2494

    CAS  Google Scholar 

  53. For selected reviews see: Sawamura M, Ito Y. Chem Rev, 1992, 92: 857–871

    CAS  Google Scholar 

  54. For selected reviews on non-covalent interaction, see: Haldar C, Hoque M E, Bisht R, Chattopadhyay B. Tetrahedron Lett, 2018, 59: 1269–1277

    CAS  Google Scholar 

  55. For selected reviews on non-covalent interaction, see: Rasheed OK, Sun B. ChemistrySelect, 2018, 3: 5689–5708

    CAS  Google Scholar 

  56. For selected reviews on non-covalent interaction, see: Mahmudov KT, Gurbanov AV, Guseinov FI, Guedes da Silva MFC. Coord Chem Rev, 2019, 387: 32–46

    CAS  Google Scholar 

  57. For selected reviews on non-covalent interaction, see: Kuninobu Y, Torigoe T. Org Biomol Chem, 2020, 18: 4126–4134

    CAS  PubMed  Google Scholar 

  58. Pandit S, Maiti S, Maiti D. Org Chem Front, 2021, https://doi.org/10.1039/d1qo00452b

  59. For selected reviews on non-covalent interaction, see: Trouvé J, Gramage-Doria R. Chem Soc Rev, 2021, 50: 3565–3584

    PubMed  Google Scholar 

  60. For selected reviews on reversible covalent bonding, see: Sun H, Guimond N, Huang Y. Org Biomol Chem, 2016, 14: 8389–8397

    CAS  PubMed  Google Scholar 

  61. For selected reviews on reversible covalent bonding, see: Afewerki S, Córdova A. Chem Rev, 2016, 116: 13512–13570

    CAS  PubMed  Google Scholar 

  62. For selected reviews on reversible covalent bonding, see: Zhao Q, Poisson T, Pannecoucke X, Besset T. Synthesis, 2017, 49: 4808–4826

    CAS  Google Scholar 

  63. For selected reviews on reversible covalent bonding, see: Kim DS, Park WJ, Jun CH. Chem Rev, 2017, 117: 8977–9015

    CAS  PubMed  Google Scholar 

  64. For selected reviews on reversible covalent bonding, see: Gandeepan P, Ackermann L. Chem, 2018, 4: 199–222

    CAS  Google Scholar 

  65. For selected reviews on reversible covalent bonding, see: Bhattacharya T, Pimparkar S, Maiti D. RSC Adv, 2018, 8: 19456–19464

    CAS  Google Scholar 

  66. For selected reviews on reversible covalent bonding, see: St John-Campbell S, Bull JA. Org Biomol Chem, 2018, 16: 4582–4595

    CAS  PubMed  Google Scholar 

  67. For selected reviews on reversible covalent bonding, see: Niu B, Yang K, Lawrence B, Ge H. ChemSusChem, 2019, 12: 2955–2969

    CAS  PubMed  Google Scholar 

  68. For selected examples on H-bonding, see: Kuninobu Y, Ida H, Nishi M, Kanai M. Nat Chem, 2015, 7: 712–717

    CAS  PubMed  Google Scholar 

  69. For selected examples on H-bonding, see: Lu X, Yoshigoe Y, Ida H, Nishi M, Kanai M, Kuninobu Y. ACS Catal, 2019, 9: 1705–1709

    CAS  Google Scholar 

  70. For selected examples on H-bonding, see: Bai ST, Bheeter CB, Reek JNH. Angew Chem Int Ed, 2019, 58: 13039–13043

    CAS  Google Scholar 

  71. For selected examples on H-bonding, see: Reyes RL, Sato M, Iwai T, Suzuki K, Maeda S, Sawamura M. Science, 2020, 369: 970–974

    CAS  PubMed  Google Scholar 

  72. For selected examples on H-bonding, see: Genov GR, Douthwaite JL, Lahdenperä ASK, Gibson DC, Phipps RJ. Science, 2020, 367: 1246–1251

    CAS  PubMed  Google Scholar 

  73. For selected examples on ion-pair bonding, see: Davis HJ, Mihai MT, Phipps RJ. J Am Chem Soc, 2016, 138: 12759–12762

    CAS  PubMed  Google Scholar 

  74. For selected examples on ion-pair bonding, see: Davis HJ, Genov GR, Phipps RJ. Angew Chem Int Ed, 2017, 56: 13351–13355

    CAS  Google Scholar 

  75. For selected examples on ion-pair bonding, see: Mihai MT, Davis HJ, Genov GR, Phipps RJ. ACS Catal, 2018, 8: 3764–3769

    CAS  Google Scholar 

  76. For selected examples on ion-pair bonding, see: Lee B, Mihai MT, Stojalnikova V, Phipps RJ. J Org Chem, 2019, 84: 13124–13134

    CAS  PubMed  PubMed Central  Google Scholar 

  77. For selected examples on ion-pair bonding, see: Montero Bastidas JR, Oleskey TJ, Miller SL, Smith III MR, Maleczka Jr. RE. J Am Chem Soc, 2019, 141: 15483–15487

    CAS  PubMed  Google Scholar 

  78. For selected examples on electrostatic interactions, see: Chattopadhyay B, Dannatt JE, Andujar-De Sanctis IL, Gore KA, Maleczka Jr. RE, Singleton DA, Smith III MR. J Am Chem Soc, 2017, 139: 7864–7871

    CAS  PubMed  PubMed Central  Google Scholar 

  79. For selected examples on electrostatic interactions, see: Chaturvedi J, Haldar C, Bisht R, Pandey G, Chattopadhyay B. J Am Chem Soc, 2021, 143: 7604–7611

    CAS  PubMed  Google Scholar 

  80. For selected reviews on bimetallic catalysis with both two metals as catalysts, see: van den Beuken EK, Feringa BL. Tetrahedron, 1998, 54: 12985–13011

    CAS  Google Scholar 

  81. For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Rowlands GJ. Tetrahedron, 2001, 57: 1865–1882

    CAS  Google Scholar 

  82. For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Matsunaga S, Shibasaki M. Bull Chem Soc Jpn, 2008, 81: 60–75

    CAS  Google Scholar 

  83. For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Pérez-Temprano MH, Casares JA, Espinet P. Chem Eur J, 2012, 18: 1864–1884

    PubMed  Google Scholar 

  84. For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Park J, Hong S. Chem Soc Rev, 2012, 41: 6931–6943

    CAS  PubMed  Google Scholar 

  85. For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Hetterscheid DGH, Chikkali SH, de Bruin B, Reek JNH. ChemCatChem, 2013, 5: 2785–2793

    CAS  Google Scholar 

  86. For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Mankad NP. Chem Eur J, 2016, 22: 5822–5829

    CAS  PubMed  Google Scholar 

  87. For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Fu J, Huo X, Li B, Zhang W. Org Biomol Chem, 2017, 15: 9747–9759

    CAS  PubMed  Google Scholar 

  88. For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Pye DR, Mankad NP. Chem Sci, 2017, 8: 1705–1718

    CAS  PubMed  PubMed Central  Google Scholar 

  89. For selected reviews on bimetallic catalysis without directing effect, see: Wang YX, Ye M. Sci China Chem, 2018, 61: 1004–1013

    CAS  Google Scholar 

  90. For selected reviews on bimetallic catalysis without directing effect, see: Hu Y, Wang C. Acta Physico-Chim Sin, 2019, 35: 913–922

    CAS  Google Scholar 

  91. Shapley JR, Samkoff DE, Bueno C, Churchill MR. Inorg Chem, 1982, 21: 634–639

    CAS  Google Scholar 

  92. Moore EJ, Pretzer WR, O’Connell TJ, Harris J, LaBounty L, Chou L, Grimmer SS. J Am Chem Soc, 1992, 114: 5888–5890

    CAS  Google Scholar 

  93. Chatani N, Fukuyama T, Kakiuchi F, Murai S. J Am Chem Soc, 1996, 118: 493–494

    CAS  Google Scholar 

  94. Fukuyama T, Chatani N, Tatsumi J, Kakiuchi F, Murai S. J Am Chem Soc, 1998, 120: 11522–11523

    CAS  Google Scholar 

  95. Kawashima T, Takao T, Suzuki H. J Am Chem Soc, 2007, 129: 11006–11007

    CAS  PubMed  Google Scholar 

  96. Kwak J, Kim M, Chang S. J Am Chem Soc, 2011, 133: 3780–3783

    CAS  PubMed  Google Scholar 

  97. Berman AM, Lewis JC, Bergman RG, Ellman JA. J Am Chem Soc, 2008, 130: 14926–14927

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Berman AM, Bergman RG, Ellman JA. J Org Chem, 2010, 75: 7863–7868

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tamaki T, Ohashi M, Ogoshi S. Angew Chem Int Ed, 2011, 50: 12067–12070

    CAS  Google Scholar 

  100. Liu S, Sawicki J, Driver TG. Org Lett, 2012, 14: 3744–3747

    CAS  PubMed  Google Scholar 

  101. Hoque ME, Bisht R, Haldar C, Chattopadhyay B. J Am Chem Soc, 2017, 139: 7745–7748

    CAS  PubMed  Google Scholar 

  102. Bisht R, Hoque ME, Chattopadhyay B. Angew Chem Int Ed, 2018, 57: 15762–15766

    CAS  Google Scholar 

  103. Zhang Z, Tanaka K, Yu JQ. Nature, 2017, 543: 538–542

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ramakrishna K, Biswas JP, Jana S, Achar TK, Porey S, Maiti D. Angew Chem Int Ed, 2019, 58: 13808–13812

    CAS  Google Scholar 

  105. Achar TK, Ramakrishna K, Pal T, Porey S, Dolui P, Biswas JP, Maiti D. Chem Eur J, 2018, 24: 17906–17910

    CAS  PubMed  Google Scholar 

  106. Achar TK, Biswas JP, Porey S, Pal T, Ramakrishna K, Maiti S, Maiti D. JOrg Chem, 2019, 84: 8315–8321

    CAS  Google Scholar 

  107. Shi H, Lu Y, Weng J, Bay KL, Chen X, Tanaka K, Verma P, Houk KN, Yu JQ. Nat Chem, 2020, 12: 399–404

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Trouvé J, Zardi P, Al-Shehimy S, Roisnel T, Gramage-Doria R. Angew Chem Int Ed, 2021, 60: 18006–18013

    Google Scholar 

  109. Li HL, Kuninobu Y, Kanai M. Angew Chem Int Ed, 2017, 56: 1495–1499 2021, 11: 858–864

    CAS  Google Scholar 

  110. Hara N, Saito T, Semba K, Kuriakose N, Zheng H, Sakaki S, Nakao Y. J Am Chem Soc, 2018, 140: 7070–7073

    CAS  PubMed  Google Scholar 

  111. Hara N, Uemura N, Nakao Y. Chem Commun, 2021, 57: 5957–5960

    CAS  Google Scholar 

  112. Yang L, Uemura N, Nakao Y. J Am Chem Soc, 2019, 141: 7972–7979

    CAS  PubMed  Google Scholar 

  113. For selected reviews on first-row transition metal-catalysis, see: Su B, Cao ZC, Shi ZJ. Acc Chem Res, 2015, 48: 886–896

    CAS  PubMed  Google Scholar 

  114. For selected reviews on first-row transition metal-catalysis, see: Zweig JE, Kim DE, Newhouse TR. Chem Rev, 2017, 117: 11680–11752

    CAS  PubMed  Google Scholar 

  115. For selected reviews on first-row transition metal-catalysis, see: Chen J, Guo J, Lu Z. Chin J Chem, 2018, 36: 1075–1109

    CAS  Google Scholar 

  116. For selected reviews on first-row transition metal-catalysis, see: Obligacion JV, Chirik PJ. Nat Rev Chem, 2018, 2: 15–34

    CAS  PubMed  PubMed Central  Google Scholar 

  117. For selected reviews on first-row transition metal-catalysis, see: Peng JB, Wu FP, Wu XF. Chem Rev, 2019, 119: 2090–2127

    CAS  PubMed  Google Scholar 

  118. For selected reviews on first-row transition metal-catalysis, see: Alig L, Fritz M, Schneider S. Chem Rev, 2019, 119: 2681–2751

    CAS  PubMed  Google Scholar 

  119. For selected reviews on first-row transition metal-catalysis, see: Wang R, Luan Y, Ye M. Chin J Chem, 2019, 37: 720–743

    CAS  Google Scholar 

  120. For recent reviews on 3d-metals catalyzed C-H functionalization, see: Khake SM, Chatani N. Chem, 2020, 6: 1056–1081

    CAS  Google Scholar 

  121. For recent reviews on 3d-metals catalyzed C-H functionalization, see: Yamaguchi J, Muto K, Itami K. Top Curr Chem (Z), 2016, 374: 55

    Google Scholar 

  122. Cai XH, Xie B. ARKIVOC, 2015, 184–211

  123. For recent reviews on 3d-metals catalyzed C-H functionalization, see: Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem Rev, 2019, 119: 2192–2452

    CAS  Google Scholar 

  124. For recent reviews on 3d-metals catalyzed C-H functionalization, see: Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew Chem Int Ed, 2019, 58: 12803–12818

    CAS  Google Scholar 

  125. For recent reviews on 3d-metals catalyzed C-H functionalization, see: Wožniak Ł, Cramer N. Trends Chem, 2019, 1: 471–484

    Google Scholar 

  126. For recent reviews on 3d-metals catalyzed C-H functionalization, see: Liu Y, Xia Y, Shi B. Chin J Chem, 2020, 38: 635–662

    CAS  Google Scholar 

  127. For recent reviews on 3d-metals catalyzed C-H functionalization, see: Khake SM, Chatani N. Trends Chem, 2019, 1: 524–539

    CAS  Google Scholar 

  128. For recent reviews on 3d-metals catalyzed C-H functionalization, see: Chu JCK, Rovis T. Angew Chem Int Ed, 2018, 57: 62–101

    CAS  Google Scholar 

  129. Feng YN, Shi BF. Chin J Org Chem, 2021, https://doi.org/10.6023/cjoc202104004

  130. Nakao Y, Idei H, Kanyiva KS, Hiyama T. J Am Chem Soc, 2009, 131: 5070–5071

    CAS  PubMed  Google Scholar 

  131. Miyazaki Y, Yamada Y, Nakao Y, Hiyama T. Chem Lett, 2012, 41: 298–300

    CAS  Google Scholar 

  132. Donets PA, Cramer N. J Am Chem Soc, 2013, 135: 11772–11775

    CAS  PubMed  Google Scholar 

  133. Liu QS, Wang DY, Yang ZJ, Luan YX, Yang JF, Li JF, Pu YG, Ye M. J Am Chem Soc, 2017, 139: 18150–18153

    CAS  PubMed  Google Scholar 

  134. Wang YX, Qi SL, Luan YX, Han XW, Wang S, Chen H, Ye M. J Am Chem Soc, 2018, 140: 5360–5364

    CAS  PubMed  Google Scholar 

  135. Nakao Y, Morita E, Idei H, Hiyama T. J Am Chem Soc, 2011, 133: 3264–3267

    CAS  PubMed  Google Scholar 

  136. Wang YX, Zhang FP, Luan YX, Ye M. Org Lett, 2020, 22: 2230–2234

    CAS  PubMed  Google Scholar 

  137. Chen H, Wang YX, Luan YX, Ye MC. Angew Chem Int Ed, 2020, 132: 9528–9532

    Google Scholar 

  138. Qi SL, Li Y, Li JF, Zhang T, Luan YX, Ye M. Org Lett, 2021, 23: 4034–4039

    CAS  PubMed  Google Scholar 

  139. Gigant N, Chausset-Boissarie L, Gillaizeau I. Chem Eur J, 2014, 20: 7548–7564

    CAS  PubMed  Google Scholar 

  140. Zhu T, Xie S, Rojsitthisak P, Wu J. Org Biomol Chem, 2020, 18: 1504–1521

    CAS  PubMed  Google Scholar 

  141. Rakshit S, Patureau FW, Glorius F. JAm Chem Soc, 2010, 132: 9585–9587

    CAS  Google Scholar 

  142. Wang RH, Li JF, Li Y, Qi SL, Zhang T, Luan YX, Ye M. ACS Catal, 2021, 11: 858–864

    CAS  Google Scholar 

  143. For selected examples on C5-H functionalization via electrophilic activation pathway, see: Itahara T, Ouseto F. Synthesis, 1984, 1984: 488–489

    Google Scholar 

  144. For selected examples on C5-H functionalization via electrophilic activation pathway, see: Li Y, Xie F, Li X. J Org Chem, 2016, 81: 715–722

    CAS  PubMed  Google Scholar 

  145. For selected examples on C5-H functionalization via electrophilic activation pathway, see: Maity S, Das D, Sarkar S, Samanta R. Org Lett, 2018, 20: 5167–5171

    CAS  PubMed  Google Scholar 

  146. For selected examples on selective C6-H functionalization via oxidative addition pathway, see: Tamura R, Yamada Y, Nakao Y, Hiyama T. Angew Chem Int Ed, 2012, 51: 5679–5682

    CAS  Google Scholar 

  147. For selected examples on selective C6-H functionalization via oxidative addition pathway, see: Nakao Y, Idei H, Kanyiva KS, Hiyama T. J Am Chem Soc, 2009, 131: 15996–15997

    CAS  PubMed  Google Scholar 

  148. For selected examples on selective C6-H functionalization via oxidative addition pathway, see: Chen Y, Wang F, Jia A, Li X. Chem Sci, 2012, 3: 3231–3236

    CAS  Google Scholar 

  149. Yin G, Li Y, Wang RH, Li JF, Xu XT, Luan YX, Ye M. ACS Catal, 2021, 11: 4606–4612

    CAS  Google Scholar 

  150. Ye M, Gao GL, Yu JQ. J Am Chem Soc, 2011, 133: 6964–6967

    CAS  PubMed  Google Scholar 

  151. Nakao Y, Kanyiva KS, Hiyama T. J Am Chem Soc, 2008, 130: 2448–2449

    CAS  PubMed  Google Scholar 

  152. For relevant examples, see: Tsai CC, Shih WC, Fang CH, Li CY, Ong TG, Yap GPA. J Am Chem Soc, 2010, 132: 11887–11889

    CAS  PubMed  Google Scholar 

  153. For relevant examples, see: Nakao Y, Yamada Y, Kashihara N, Hiyama T. J Am Chem Soc, 2010, 132: 13666–13668

    CAS  PubMed  Google Scholar 

  154. For relevant examples, see: Lee WC, Chen CH, Liu CY, Yu MS, Lin YH, Ong TG. Chem Commun, 2015, 51: 17104–17107

    CAS  Google Scholar 

  155. Zhang T, Luan YX, Lam N, Li JF, Li Y, Ye MC, Yu JQ. https://doi.org/10.26434/chemrxiv.13250420.vl

  156. Nakao Y, Yada A, Ebata S, Hiyama T. J Am Chem Soc, 2007, 129: 2428–2429

    CAS  PubMed  Google Scholar 

  157. Nakao Y, Ebata S, Yada A, Hiyama T, Ikawa M, Ogoshi S. J Am Chem Soc, 2008, 130: 12874–12875

    CAS  PubMed  Google Scholar 

  158. Hirata Y, Yukawa T, Kashihara N, Nakao Y, Hiyama T. J Am Chem Soc, 2009, 131: 10964–10973

    CAS  PubMed  Google Scholar 

  159. Yada A, Yukawa T, Nakao Y, Hiyama T. Chem Commun, 2009, 107: 3931–3933

    Google Scholar 

  160. Nakao Y, Yada A, Hiyama T. J Am Chem Soc, 2010, 132: 10024–10026

    CAS  PubMed  Google Scholar 

  161. Yada A, Ebata S, Idei H, Zhang D, Nakao Y, Hiyama T. BCSJ, 2010, 83: 1170–1184

    CAS  Google Scholar 

  162. Yamada Y, Ebata S, Hiyama T, Nakao Y. Tetrahedron, 2015, 71: 4413–4417

    CAS  Google Scholar 

  163. Nakai K, Kurahashi T, Matsubara S. J Am Chem Soc, 2011, 133: 11066–11068

    CAS  PubMed  Google Scholar 

  164. Nakai K, Kurahashi T, Matsubara S. Org Lett, 2013, 15: 856–859

    CAS  PubMed  Google Scholar 

  165. Nakai K, Kurahashi T, Matsubara S. Tetrahedron, 2015, 71: 4512–4517

    CAS  Google Scholar 

  166. Yasui Y, Kamisaki H, Takemoto Y. Org Lett, 2008, 10: 3303–3306

    CAS  PubMed  Google Scholar 

  167. Yasui Y, Kinugawa T, Takemoto Y. Chem Commun, 2009, 1: 4275–4277

    Google Scholar 

  168. Yasui Y, Kamisaki H, Ishida T, Takemoto Y. Tetrahedron, 2010, 66: 1980–1989

    CAS  Google Scholar 

  169. Frost GB, Serratore NA, Ogilvie JM, Douglas CJ. J Org Chem, 2017, 82: 3721–3726

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Dreis AM, Otte SC, Eastwood MS, Alonzi ER, Brethorst JT, Douglas CJ. Eur J Org Chem, 2017, 2017(1): 45–48

    CAS  Google Scholar 

  171. Hsieh JC, Ebata S, Nakao Y, Hiyama T. Synlett, 2010, 1709

  172. Watson MP, Jacobsen EN. J Am Chem Soc, 2008, 130: 12594–12595

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang T, Luan YX, Zheng SJ, Peng Q, Ye M. Angew Chem Int Ed, 2020, 59: 7439–7443

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91856104, 21871145), the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (19JCZDJC37900) and “Frontiers Science Center for New Organic Matter”, Nankai University (63181206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Xin Luan or Mengchun Ye.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, JF., Luan, YX. & Ye, M. Bimetallic anchoring catalysis for C-H and C-C activation. Sci. China Chem. 64, 1923–1937 (2021). https://doi.org/10.1007/s11426-021-1068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1068-2

Keywords

  • C-H activation
  • C-C activation
  • bimetallic catalysis
  • enantioselective
  • anchoring catalysis