Kakiuchi F, Chatani N. Adv Synthesis Catal, 2003, 345: 1077–1101
CAS
Google Scholar
Godula K, Sames D. Science, 2006, 312: 67–72
CAS
PubMed
Google Scholar
Yamaguchi J, Yamaguchi AD, Itami K. Angew Chem Int Ed, 2012, 51: 8960–9009
CAS
Google Scholar
For selected reviews on C-H activation: Dyker G. Angew Chem Int Ed, 1999, 38: 1698–1712
Google Scholar
Ritleng V, Sirlin C, Pfeffer M. Chem Rev, 2002, 102: 1731–1770
CAS
PubMed
Google Scholar
Kakiuchi F, Murai S. Acc Chem Res, 2002, 35: 826–834
CAS
PubMed
Google Scholar
Seregin IV, Gevorgyan V. Chem Soc Rev, 2007, 36: 1173–1193
CAS
PubMed
PubMed Central
Google Scholar
Lewis JC, Bergman RG, Ellman JA. Acc Chem Res, 2008, 41: 1013–1025
CAS
PubMed
PubMed Central
Google Scholar
Giri R, Shi BF, Engle KM, Maugel N, Yu JQ. Chem Soc Rev, 2009, 38: 3242–3272
CAS
PubMed
Google Scholar
Colby DA, Bergman RG, Ellman JA. Chem Rev, 2010, 110: 624–655
CAS
PubMed
PubMed Central
Google Scholar
Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem Soc Rev, 2011, 40: 4740–4761
CAS
PubMed
Google Scholar
Yang L, Huang H. Chem Rev, 2015, 115: 3468–3517
CAS
PubMed
Google Scholar
Tao P, Jia Y. Sci China Chem, 2016, 59: 1109–1125
CAS
Google Scholar
Newton CG, Wang SG, Oliveira CC, Cramer N. Chem Rev, 2017, 117: 8908–8976
CAS
PubMed
Google Scholar
Diesel J, Cramer N. ACS Catal, 2019, 9: 9164–9177
CAS
Google Scholar
For selected reviews on C-C activation: Jun CH. Chem Soc Rev, 2004, 33: 610–618
CAS
PubMed
Google Scholar
Murakami M, Matsuda T. Chem Commun, 2011, 47: 1100–1105
CAS
Google Scholar
Chen F, Wang T, Jiao N. Chem Rev, 2014, 114: 8613–8661
CAS
PubMed
Google Scholar
Dermenci A, Coe JW, Dong G. Org Chem Front, 2014, 1: 567–581
CAS
PubMed
PubMed Central
Google Scholar
Marek I, Masarwa A, Delaye PO, Leibeling M. Angew Chem Int Ed, 2015, 54: 414–429
CAS
Google Scholar
Souillart L, Cramer N. Chem Rev, 2015, 115: 9410–9464
CAS
PubMed
Google Scholar
Chen PH, Billett BA, Tsukamoto T, Dong G. ACS Catal, 2017, 7: 1340–1360
CAS
PubMed
PubMed Central
Google Scholar
Murakami M, Ishida N. Chem Rev, 2021, 121: 264–299
CAS
PubMed
Google Scholar
For selected examples on intramolecular C-H activation, see: Ames DE, Opalko A. Tetrahedron, 1984, 40: 1919–1925
CAS
Google Scholar
For selected examples on intramolecular C-H activation, see: Echavarren AM. J Am Chem Soc. 2006, 128: 1066–1067
PubMed
Google Scholar
For selected examples on intramolecular C-H activation, see: Basolo L, Beccalli EM, Borsini E, Broggini G. Tetrahedron, 2009, 65: 3486–3491
CAS
Google Scholar
For selected reviews on directing group, see: Jun CH, Moon CW, Lee DY. Chem EurJ, 2002, 8: 2422–2428
CAS
Google Scholar
For selected reviews on directing group, see: Wang J, Chen W, Zuo S, Liu L, Zhang X, Wang J. Angew Chem Int Ed, 2012, 51: 12334–12338
CAS
Google Scholar
For selected reviews on directing group, see: Corbet M, De Campo F. Angew Chem Int Ed, 2013, 52: 9896–9898
CAS
Google Scholar
For selected reviews on directing group, see: Rouquet G, Chatani N. Angew Chem Int Ed, 2013, 52: 11726–11743
CAS
Google Scholar
For selected reviews on directing group, see: Zhang M, Zhang Y, Jie X, Zhao H, Li G, Su W. Org Chem Front, 2014, 1: 843–895
CAS
Google Scholar
For selected reviews on directing group, see: Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org Chem Front, 2015, 2: 1107–1295
CAS
Google Scholar
For selected reviews on directing group, see: Castro LCM, Chatani N. Chem Lett, 2015, 44: 410–421
CAS
Google Scholar
For selected reviews on directing group, see: Wang K, Hu F, Zhang Y, Wang J. Sci China Chem, 2015, 58: 1252–1265
CAS
Google Scholar
For selected reviews on directing group, see: Zhu RY, Farmer ME, Chen YQ, Yu JQ. Angew Chem Int Ed, 2016, 55: 10578–10599
CAS
Google Scholar
For selected reviews on directing group, see: Zhang L, Fang DC. Org Chem Front, 2017, 4: 1250–1260
CAS
Google Scholar
For selected reviews on directing group, see: Rej S, Ano Y, Chatani N. Chem Rev, 2020, 120: 1788–1887
CAS
PubMed
Google Scholar
For selected reviews on directing group, see: Ali W, Prakash G, Maiti D. Chem Sci, 2021, 12: 2735–2759
CAS
PubMed
PubMed Central
Google Scholar
For selected reviews on directing group, see: Dutta U, Maiti S, Bhattacharya T, Maiti D. Science, 2021, 372: eabd5992
CAS
PubMed
Google Scholar
For selected reviews on directing group, see: Suseelan AS, Dutta A, Lahiri GK, Maiti D. Trends Chem, 2021, 3: 188–203
CAS
Google Scholar
For selected reviews on directing group, see: Dey A, Sinha SK, Achar TK, Maiti D. Angew Chem Int Ed, 2019, 58: 10820–10843
CAS
Google Scholar
For selected reviews see: Wu Y, Shi B. Chin J Org Chem, 2020, 40: 3517–3535
CAS
Google Scholar
For selected reviews see: Liao G, Zhang T, Lin ZK, Shi BF. Angew Chem Int Ed, 2020, 59: 19773–19786
CAS
Google Scholar
For selected reviews see: Becica J, Dobereiner GE. Org Biomol Chem, 2019, 17: 2055–2069
CAS
PubMed
Google Scholar
For selected reviews see: Omann L, Königs CDF, Klare HFT, Oestreich M. Acc Chem Res, 2017, 50: 1258–1269
CAS
PubMed
Google Scholar
For selected reviews see: Davis HJ, Phipps RJ. Chem Sci, 2017, 8: 864–877
CAS
PubMed
Google Scholar
For selected reviews see: Chen DF, Han ZY, Zhou XL, Gong LZ. Acc Chem Res, 2014, 47: 2365–2377
CAS
PubMed
Google Scholar
For selected reviews see: Dong XQ, Zhao Q, Li P, Chen C, Zhang X. Org Chem Front, 2015, 2: 1425–1431
CAS
Google Scholar
For selected reviews see: Dydio P, Reek JNH. Chem Sci, 2014, 5: 2135–2145
CAS
Google Scholar
For selected reviews see: Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM. Chem Soc Rev, 2014, 43: 1660–1733
CAS
PubMed
Google Scholar
For selected reviews see: Tan KL. ACS Catal, 2011, 1: 877–886
CAS
Google Scholar
For selected reviews see: Rousseau G, Breit B. Angew Chem Int Ed, 2011, 50: 2450–2494
CAS
Google Scholar
For selected reviews see: Sawamura M, Ito Y. Chem Rev, 1992, 92: 857–871
CAS
Google Scholar
For selected reviews on non-covalent interaction, see: Haldar C, Hoque M E, Bisht R, Chattopadhyay B. Tetrahedron Lett, 2018, 59: 1269–1277
CAS
Google Scholar
For selected reviews on non-covalent interaction, see: Rasheed OK, Sun B. ChemistrySelect, 2018, 3: 5689–5708
CAS
Google Scholar
For selected reviews on non-covalent interaction, see: Mahmudov KT, Gurbanov AV, Guseinov FI, Guedes da Silva MFC. Coord Chem Rev, 2019, 387: 32–46
CAS
Google Scholar
For selected reviews on non-covalent interaction, see: Kuninobu Y, Torigoe T. Org Biomol Chem, 2020, 18: 4126–4134
CAS
PubMed
Google Scholar
Pandit S, Maiti S, Maiti D. Org Chem Front, 2021, https://doi.org/10.1039/d1qo00452b
For selected reviews on non-covalent interaction, see: Trouvé J, Gramage-Doria R. Chem Soc Rev, 2021, 50: 3565–3584
PubMed
Google Scholar
For selected reviews on reversible covalent bonding, see: Sun H, Guimond N, Huang Y. Org Biomol Chem, 2016, 14: 8389–8397
CAS
PubMed
Google Scholar
For selected reviews on reversible covalent bonding, see: Afewerki S, Córdova A. Chem Rev, 2016, 116: 13512–13570
CAS
PubMed
Google Scholar
For selected reviews on reversible covalent bonding, see: Zhao Q, Poisson T, Pannecoucke X, Besset T. Synthesis, 2017, 49: 4808–4826
CAS
Google Scholar
For selected reviews on reversible covalent bonding, see: Kim DS, Park WJ, Jun CH. Chem Rev, 2017, 117: 8977–9015
CAS
PubMed
Google Scholar
For selected reviews on reversible covalent bonding, see: Gandeepan P, Ackermann L. Chem, 2018, 4: 199–222
CAS
Google Scholar
For selected reviews on reversible covalent bonding, see: Bhattacharya T, Pimparkar S, Maiti D. RSC Adv, 2018, 8: 19456–19464
CAS
Google Scholar
For selected reviews on reversible covalent bonding, see: St John-Campbell S, Bull JA. Org Biomol Chem, 2018, 16: 4582–4595
CAS
PubMed
Google Scholar
For selected reviews on reversible covalent bonding, see: Niu B, Yang K, Lawrence B, Ge H. ChemSusChem, 2019, 12: 2955–2969
CAS
PubMed
Google Scholar
For selected examples on H-bonding, see: Kuninobu Y, Ida H, Nishi M, Kanai M. Nat Chem, 2015, 7: 712–717
CAS
PubMed
Google Scholar
For selected examples on H-bonding, see: Lu X, Yoshigoe Y, Ida H, Nishi M, Kanai M, Kuninobu Y. ACS Catal, 2019, 9: 1705–1709
CAS
Google Scholar
For selected examples on H-bonding, see: Bai ST, Bheeter CB, Reek JNH. Angew Chem Int Ed, 2019, 58: 13039–13043
CAS
Google Scholar
For selected examples on H-bonding, see: Reyes RL, Sato M, Iwai T, Suzuki K, Maeda S, Sawamura M. Science, 2020, 369: 970–974
CAS
PubMed
Google Scholar
For selected examples on H-bonding, see: Genov GR, Douthwaite JL, Lahdenperä ASK, Gibson DC, Phipps RJ. Science, 2020, 367: 1246–1251
CAS
PubMed
Google Scholar
For selected examples on ion-pair bonding, see: Davis HJ, Mihai MT, Phipps RJ. J Am Chem Soc, 2016, 138: 12759–12762
CAS
PubMed
Google Scholar
For selected examples on ion-pair bonding, see: Davis HJ, Genov GR, Phipps RJ. Angew Chem Int Ed, 2017, 56: 13351–13355
CAS
Google Scholar
For selected examples on ion-pair bonding, see: Mihai MT, Davis HJ, Genov GR, Phipps RJ. ACS Catal, 2018, 8: 3764–3769
CAS
Google Scholar
For selected examples on ion-pair bonding, see: Lee B, Mihai MT, Stojalnikova V, Phipps RJ. J Org Chem, 2019, 84: 13124–13134
CAS
PubMed
PubMed Central
Google Scholar
For selected examples on ion-pair bonding, see: Montero Bastidas JR, Oleskey TJ, Miller SL, Smith III MR, Maleczka Jr. RE. J Am Chem Soc, 2019, 141: 15483–15487
CAS
PubMed
Google Scholar
For selected examples on electrostatic interactions, see: Chattopadhyay B, Dannatt JE, Andujar-De Sanctis IL, Gore KA, Maleczka Jr. RE, Singleton DA, Smith III MR. J Am Chem Soc, 2017, 139: 7864–7871
CAS
PubMed
PubMed Central
Google Scholar
For selected examples on electrostatic interactions, see: Chaturvedi J, Haldar C, Bisht R, Pandey G, Chattopadhyay B. J Am Chem Soc, 2021, 143: 7604–7611
CAS
PubMed
Google Scholar
For selected reviews on bimetallic catalysis with both two metals as catalysts, see: van den Beuken EK, Feringa BL. Tetrahedron, 1998, 54: 12985–13011
CAS
Google Scholar
For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Rowlands GJ. Tetrahedron, 2001, 57: 1865–1882
CAS
Google Scholar
For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Matsunaga S, Shibasaki M. Bull Chem Soc Jpn, 2008, 81: 60–75
CAS
Google Scholar
For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Pérez-Temprano MH, Casares JA, Espinet P. Chem Eur J, 2012, 18: 1864–1884
PubMed
Google Scholar
For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Park J, Hong S. Chem Soc Rev, 2012, 41: 6931–6943
CAS
PubMed
Google Scholar
For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Hetterscheid DGH, Chikkali SH, de Bruin B, Reek JNH. ChemCatChem, 2013, 5: 2785–2793
CAS
Google Scholar
For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Mankad NP. Chem Eur J, 2016, 22: 5822–5829
CAS
PubMed
Google Scholar
For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Fu J, Huo X, Li B, Zhang W. Org Biomol Chem, 2017, 15: 9747–9759
CAS
PubMed
Google Scholar
For selected reviews on bimetallic catalysis with both two metals as catalysts, see: Pye DR, Mankad NP. Chem Sci, 2017, 8: 1705–1718
CAS
PubMed
PubMed Central
Google Scholar
For selected reviews on bimetallic catalysis without directing effect, see: Wang YX, Ye M. Sci China Chem, 2018, 61: 1004–1013
CAS
Google Scholar
For selected reviews on bimetallic catalysis without directing effect, see: Hu Y, Wang C. Acta Physico-Chim Sin, 2019, 35: 913–922
CAS
Google Scholar
Shapley JR, Samkoff DE, Bueno C, Churchill MR. Inorg Chem, 1982, 21: 634–639
CAS
Google Scholar
Moore EJ, Pretzer WR, O’Connell TJ, Harris J, LaBounty L, Chou L, Grimmer SS. J Am Chem Soc, 1992, 114: 5888–5890
CAS
Google Scholar
Chatani N, Fukuyama T, Kakiuchi F, Murai S. J Am Chem Soc, 1996, 118: 493–494
CAS
Google Scholar
Fukuyama T, Chatani N, Tatsumi J, Kakiuchi F, Murai S. J Am Chem Soc, 1998, 120: 11522–11523
CAS
Google Scholar
Kawashima T, Takao T, Suzuki H. J Am Chem Soc, 2007, 129: 11006–11007
CAS
PubMed
Google Scholar
Kwak J, Kim M, Chang S. J Am Chem Soc, 2011, 133: 3780–3783
CAS
PubMed
Google Scholar
Berman AM, Lewis JC, Bergman RG, Ellman JA. J Am Chem Soc, 2008, 130: 14926–14927
CAS
PubMed
PubMed Central
Google Scholar
Berman AM, Bergman RG, Ellman JA. J Org Chem, 2010, 75: 7863–7868
CAS
PubMed
PubMed Central
Google Scholar
Tamaki T, Ohashi M, Ogoshi S. Angew Chem Int Ed, 2011, 50: 12067–12070
CAS
Google Scholar
Liu S, Sawicki J, Driver TG. Org Lett, 2012, 14: 3744–3747
CAS
PubMed
Google Scholar
Hoque ME, Bisht R, Haldar C, Chattopadhyay B. J Am Chem Soc, 2017, 139: 7745–7748
CAS
PubMed
Google Scholar
Bisht R, Hoque ME, Chattopadhyay B. Angew Chem Int Ed, 2018, 57: 15762–15766
CAS
Google Scholar
Zhang Z, Tanaka K, Yu JQ. Nature, 2017, 543: 538–542
CAS
PubMed
PubMed Central
Google Scholar
Ramakrishna K, Biswas JP, Jana S, Achar TK, Porey S, Maiti D. Angew Chem Int Ed, 2019, 58: 13808–13812
CAS
Google Scholar
Achar TK, Ramakrishna K, Pal T, Porey S, Dolui P, Biswas JP, Maiti D. Chem Eur J, 2018, 24: 17906–17910
CAS
PubMed
Google Scholar
Achar TK, Biswas JP, Porey S, Pal T, Ramakrishna K, Maiti S, Maiti D. JOrg Chem, 2019, 84: 8315–8321
CAS
Google Scholar
Shi H, Lu Y, Weng J, Bay KL, Chen X, Tanaka K, Verma P, Houk KN, Yu JQ. Nat Chem, 2020, 12: 399–404
CAS
PubMed
PubMed Central
Google Scholar
Trouvé J, Zardi P, Al-Shehimy S, Roisnel T, Gramage-Doria R. Angew Chem Int Ed, 2021, 60: 18006–18013
Google Scholar
Li HL, Kuninobu Y, Kanai M. Angew Chem Int Ed, 2017, 56: 1495–1499 2021, 11: 858–864
CAS
Google Scholar
Hara N, Saito T, Semba K, Kuriakose N, Zheng H, Sakaki S, Nakao Y. J Am Chem Soc, 2018, 140: 7070–7073
CAS
PubMed
Google Scholar
Hara N, Uemura N, Nakao Y. Chem Commun, 2021, 57: 5957–5960
CAS
Google Scholar
Yang L, Uemura N, Nakao Y. J Am Chem Soc, 2019, 141: 7972–7979
CAS
PubMed
Google Scholar
For selected reviews on first-row transition metal-catalysis, see: Su B, Cao ZC, Shi ZJ. Acc Chem Res, 2015, 48: 886–896
CAS
PubMed
Google Scholar
For selected reviews on first-row transition metal-catalysis, see: Zweig JE, Kim DE, Newhouse TR. Chem Rev, 2017, 117: 11680–11752
CAS
PubMed
Google Scholar
For selected reviews on first-row transition metal-catalysis, see: Chen J, Guo J, Lu Z. Chin J Chem, 2018, 36: 1075–1109
CAS
Google Scholar
For selected reviews on first-row transition metal-catalysis, see: Obligacion JV, Chirik PJ. Nat Rev Chem, 2018, 2: 15–34
CAS
PubMed
PubMed Central
Google Scholar
For selected reviews on first-row transition metal-catalysis, see: Peng JB, Wu FP, Wu XF. Chem Rev, 2019, 119: 2090–2127
CAS
PubMed
Google Scholar
For selected reviews on first-row transition metal-catalysis, see: Alig L, Fritz M, Schneider S. Chem Rev, 2019, 119: 2681–2751
CAS
PubMed
Google Scholar
For selected reviews on first-row transition metal-catalysis, see: Wang R, Luan Y, Ye M. Chin J Chem, 2019, 37: 720–743
CAS
Google Scholar
For recent reviews on 3d-metals catalyzed C-H functionalization, see: Khake SM, Chatani N. Chem, 2020, 6: 1056–1081
CAS
Google Scholar
For recent reviews on 3d-metals catalyzed C-H functionalization, see: Yamaguchi J, Muto K, Itami K. Top Curr Chem (Z), 2016, 374: 55
Google Scholar
Cai XH, Xie B. ARKIVOC, 2015, 184–211
For recent reviews on 3d-metals catalyzed C-H functionalization, see: Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem Rev, 2019, 119: 2192–2452
CAS
Google Scholar
For recent reviews on 3d-metals catalyzed C-H functionalization, see: Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew Chem Int Ed, 2019, 58: 12803–12818
CAS
Google Scholar
For recent reviews on 3d-metals catalyzed C-H functionalization, see: Wožniak Ł, Cramer N. Trends Chem, 2019, 1: 471–484
Google Scholar
For recent reviews on 3d-metals catalyzed C-H functionalization, see: Liu Y, Xia Y, Shi B. Chin J Chem, 2020, 38: 635–662
CAS
Google Scholar
For recent reviews on 3d-metals catalyzed C-H functionalization, see: Khake SM, Chatani N. Trends Chem, 2019, 1: 524–539
CAS
Google Scholar
For recent reviews on 3d-metals catalyzed C-H functionalization, see: Chu JCK, Rovis T. Angew Chem Int Ed, 2018, 57: 62–101
CAS
Google Scholar
Feng YN, Shi BF. Chin J Org Chem, 2021, https://doi.org/10.6023/cjoc202104004
Nakao Y, Idei H, Kanyiva KS, Hiyama T. J Am Chem Soc, 2009, 131: 5070–5071
CAS
PubMed
Google Scholar
Miyazaki Y, Yamada Y, Nakao Y, Hiyama T. Chem Lett, 2012, 41: 298–300
CAS
Google Scholar
Donets PA, Cramer N. J Am Chem Soc, 2013, 135: 11772–11775
CAS
PubMed
Google Scholar
Liu QS, Wang DY, Yang ZJ, Luan YX, Yang JF, Li JF, Pu YG, Ye M. J Am Chem Soc, 2017, 139: 18150–18153
CAS
PubMed
Google Scholar
Wang YX, Qi SL, Luan YX, Han XW, Wang S, Chen H, Ye M. J Am Chem Soc, 2018, 140: 5360–5364
CAS
PubMed
Google Scholar
Nakao Y, Morita E, Idei H, Hiyama T. J Am Chem Soc, 2011, 133: 3264–3267
CAS
PubMed
Google Scholar
Wang YX, Zhang FP, Luan YX, Ye M. Org Lett, 2020, 22: 2230–2234
CAS
PubMed
Google Scholar
Chen H, Wang YX, Luan YX, Ye MC. Angew Chem Int Ed, 2020, 132: 9528–9532
Google Scholar
Qi SL, Li Y, Li JF, Zhang T, Luan YX, Ye M. Org Lett, 2021, 23: 4034–4039
CAS
PubMed
Google Scholar
Gigant N, Chausset-Boissarie L, Gillaizeau I. Chem Eur J, 2014, 20: 7548–7564
CAS
PubMed
Google Scholar
Zhu T, Xie S, Rojsitthisak P, Wu J. Org Biomol Chem, 2020, 18: 1504–1521
CAS
PubMed
Google Scholar
Rakshit S, Patureau FW, Glorius F. JAm Chem Soc, 2010, 132: 9585–9587
CAS
Google Scholar
Wang RH, Li JF, Li Y, Qi SL, Zhang T, Luan YX, Ye M. ACS Catal, 2021, 11: 858–864
CAS
Google Scholar
For selected examples on C5-H functionalization via electrophilic activation pathway, see: Itahara T, Ouseto F. Synthesis, 1984, 1984: 488–489
Google Scholar
For selected examples on C5-H functionalization via electrophilic activation pathway, see: Li Y, Xie F, Li X. J Org Chem, 2016, 81: 715–722
CAS
PubMed
Google Scholar
For selected examples on C5-H functionalization via electrophilic activation pathway, see: Maity S, Das D, Sarkar S, Samanta R. Org Lett, 2018, 20: 5167–5171
CAS
PubMed
Google Scholar
For selected examples on selective C6-H functionalization via oxidative addition pathway, see: Tamura R, Yamada Y, Nakao Y, Hiyama T. Angew Chem Int Ed, 2012, 51: 5679–5682
CAS
Google Scholar
For selected examples on selective C6-H functionalization via oxidative addition pathway, see: Nakao Y, Idei H, Kanyiva KS, Hiyama T. J Am Chem Soc, 2009, 131: 15996–15997
CAS
PubMed
Google Scholar
For selected examples on selective C6-H functionalization via oxidative addition pathway, see: Chen Y, Wang F, Jia A, Li X. Chem Sci, 2012, 3: 3231–3236
CAS
Google Scholar
Yin G, Li Y, Wang RH, Li JF, Xu XT, Luan YX, Ye M. ACS Catal, 2021, 11: 4606–4612
CAS
Google Scholar
Ye M, Gao GL, Yu JQ. J Am Chem Soc, 2011, 133: 6964–6967
CAS
PubMed
Google Scholar
Nakao Y, Kanyiva KS, Hiyama T. J Am Chem Soc, 2008, 130: 2448–2449
CAS
PubMed
Google Scholar
For relevant examples, see: Tsai CC, Shih WC, Fang CH, Li CY, Ong TG, Yap GPA. J Am Chem Soc, 2010, 132: 11887–11889
CAS
PubMed
Google Scholar
For relevant examples, see: Nakao Y, Yamada Y, Kashihara N, Hiyama T. J Am Chem Soc, 2010, 132: 13666–13668
CAS
PubMed
Google Scholar
For relevant examples, see: Lee WC, Chen CH, Liu CY, Yu MS, Lin YH, Ong TG. Chem Commun, 2015, 51: 17104–17107
CAS
Google Scholar
Zhang T, Luan YX, Lam N, Li JF, Li Y, Ye MC, Yu JQ. https://doi.org/10.26434/chemrxiv.13250420.vl
Nakao Y, Yada A, Ebata S, Hiyama T. J Am Chem Soc, 2007, 129: 2428–2429
CAS
PubMed
Google Scholar
Nakao Y, Ebata S, Yada A, Hiyama T, Ikawa M, Ogoshi S. J Am Chem Soc, 2008, 130: 12874–12875
CAS
PubMed
Google Scholar
Hirata Y, Yukawa T, Kashihara N, Nakao Y, Hiyama T. J Am Chem Soc, 2009, 131: 10964–10973
CAS
PubMed
Google Scholar
Yada A, Yukawa T, Nakao Y, Hiyama T. Chem Commun, 2009, 107: 3931–3933
Google Scholar
Nakao Y, Yada A, Hiyama T. J Am Chem Soc, 2010, 132: 10024–10026
CAS
PubMed
Google Scholar
Yada A, Ebata S, Idei H, Zhang D, Nakao Y, Hiyama T. BCSJ, 2010, 83: 1170–1184
CAS
Google Scholar
Yamada Y, Ebata S, Hiyama T, Nakao Y. Tetrahedron, 2015, 71: 4413–4417
CAS
Google Scholar
Nakai K, Kurahashi T, Matsubara S. J Am Chem Soc, 2011, 133: 11066–11068
CAS
PubMed
Google Scholar
Nakai K, Kurahashi T, Matsubara S. Org Lett, 2013, 15: 856–859
CAS
PubMed
Google Scholar
Nakai K, Kurahashi T, Matsubara S. Tetrahedron, 2015, 71: 4512–4517
CAS
Google Scholar
Yasui Y, Kamisaki H, Takemoto Y. Org Lett, 2008, 10: 3303–3306
CAS
PubMed
Google Scholar
Yasui Y, Kinugawa T, Takemoto Y. Chem Commun, 2009, 1: 4275–4277
Google Scholar
Yasui Y, Kamisaki H, Ishida T, Takemoto Y. Tetrahedron, 2010, 66: 1980–1989
CAS
Google Scholar
Frost GB, Serratore NA, Ogilvie JM, Douglas CJ. J Org Chem, 2017, 82: 3721–3726
CAS
PubMed
PubMed Central
Google Scholar
Dreis AM, Otte SC, Eastwood MS, Alonzi ER, Brethorst JT, Douglas CJ. Eur J Org Chem, 2017, 2017(1): 45–48
CAS
Google Scholar
Hsieh JC, Ebata S, Nakao Y, Hiyama T. Synlett, 2010, 1709
Watson MP, Jacobsen EN. J Am Chem Soc, 2008, 130: 12594–12595
CAS
PubMed
PubMed Central
Google Scholar
Zhang T, Luan YX, Zheng SJ, Peng Q, Ye M. Angew Chem Int Ed, 2020, 59: 7439–7443
CAS
Google Scholar