Skip to main content
Log in

Sulfanion-initiated open-vessel anionic ring-opening polymerization (AROP) of N-sulfonyl aziridines

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Anionic ring-opening polymerization (AROP) of N-sulfonyl aziridines is an important synthetic route to linear polyethyleneimine (PEI) and its derivatives. In most cases, inert atmosphere and dry solvent were needed because of the oxygen- and water-sensitive initiators/catalysts used. Therefore, the AROP of N-sulfonyl aziridines that can be entirely operated in air atmosphere is still a challenging task. Herein, we report a series of sulfanions, including xanthates, dithiocarbamates, dithiobenzoates, thioacetates, and thiolates, as the initiators for the AROP of N-sulfonyl aziridines. Due to their good stability, open-vessel polymerization was achieved with high livingness, affording a range of well-defined α-, ω-telechelic poly(N-sulfonyl aziridine) homopolymers and block copolymers with narrow dispersities and tunable molecular weights. The α-end group of these polyaziridines was readily converted to thiol group, which enabled further post-polymerization functionalization with benzyl acrylate and poly(ethylene glycol) via thiol-ene click chemistry. The establishment of open-vessel sulfanion-initiated AROP of N-sulfonyl aziridines thus lays a solid foundation for the bulk preparation and application of poly(N-sulfonyl aziridine)s and PEI derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H. Chem Rev, 2001, 101: 3747–3792

    Article  CAS  PubMed  Google Scholar 

  2. Li J, He J. ACS Macro Lett, 2015, 4: 372–376

    Article  CAS  Google Scholar 

  3. Bai H, Han L, Li W, Li C, Zhang S, Wang X, Yin Y, Yan H, Ma H. Macromolecules, 2021, 54: 1183–1191

    Article  CAS  Google Scholar 

  4. Hong K, Uhrig D, Mays JW. Curr Opin Solid State Mater Sci, 1999, 4: 531–538

    Article  CAS  Google Scholar 

  5. Jia M, Hadjichristidis N, Gnanou Y, Feng X. Angew Chem Int Ed, 2021, 60: 1593–1598

    Article  CAS  Google Scholar 

  6. Brocas AL, Mantzaridis C, Tunc D, Carlotti S. Prog Polym Sci, 2013, 38: 845–873

    Article  CAS  Google Scholar 

  7. Wang XM, Shao Y, Jin PF, Jiang W, Hu W, Yang S, Li W, He J, Ni P, Zhang WB. Macromolecules, 2018, 51: 1110–1119

    Article  CAS  Google Scholar 

  8. Baskaran D, Muller A. Prog Polym Sci, 2007, 32: 173–219

    Article  CAS  Google Scholar 

  9. Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Chem Rev, 2016, 116: 2170–2243

    Article  CAS  PubMed  Google Scholar 

  10. Knop K, Hoogenboom R, Fischer D, Schubert US. Angew Chem Int Ed, 2010, 49: 6288–6308

    Article  CAS  Google Scholar 

  11. Polymeropoulos G, Zapsas G, Ntetsikas K, Bilalis P, Gnanou Y, Hadjichristidis N. Macromolecules, 2017, 50: 1253–1290

    Article  CAS  Google Scholar 

  12. Sweeney JB. Chem Soc Rev, 2002, 31: 247–258

    Article  CAS  PubMed  Google Scholar 

  13. Stewart IC, Lee CC, Bergman RG, Toste FD. J Am Chem Soc, 2005, 127: 17616–17617

    Article  CAS  PubMed  Google Scholar 

  14. Reisman L, Mbarushimana CP, Cassidy SJ, Rupar PA. ACS Macro Lett, 2016, 5: 1137–1140

    Article  CAS  Google Scholar 

  15. Rieger E, Gleede T, Manhart A, Lamla M, Wurm FR. ACS Macro Lett, 2018, 7: 598–603

    Article  CAS  Google Scholar 

  16. Gleede T, Reisman L, Rieger E, Mbarushimana PC, Rupar PA, Wurm FR. Polym Chem, 2019, 10: 3257–3283

    Article  CAS  Google Scholar 

  17. Gleede T, Rieger E, Liu L, Bakkali-Hassani C, Wagner M, Carlotti S, Taton D, Andrienko D, Wurm FR. Macromolecules, 2018, 51: 5713–5719

    Article  CAS  Google Scholar 

  18. Zhou L, Wang Z, Xu G, Yang R, Yan H, Hao XQ, Wang Q. Eur Polym J, 2020, 140: 110046

    Article  CAS  Google Scholar 

  19. Wang Y, Yang R, Luo W, Li Z, Zhang Z, Wu C, Hadjichristidis N. Macromolecules, 2019, 52: 3888–3896

    Article  CAS  Google Scholar 

  20. Luo W, Wang Y, Jin Y, Zhang Z, Wu C. J Polym Sci, 2020, 58: 2116–2125

    Article  CAS  Google Scholar 

  21. Li Z, Chen R, Wang Y, Zhu L, Luo W, Zhang Z, Hadjichristidis N. Polym Chem, 2021, 12: 1787–1796

    Article  CAS  Google Scholar 

  22. Rieger E, Gleede T, Weber K, Manhart A, Wagner M, Wurm FR. Polym Chem, 2017, 8: 2824–2832

    Article  CAS  Google Scholar 

  23. Bakkali-Hassani C, Rieger E, Vignolle J, Wurm FR, Carlotti S, Taton D. Chem Commun, 2016, 52: 9719–9722

    Article  CAS  Google Scholar 

  24. Bakkali-Hassani C, Coutouly C, Gleede T, Vignolle J, Wurm FR, Carlotti S, Taton D. Macromolecules, 2018, 51: 2533–2541

    Article  CAS  Google Scholar 

  25. Bakkali-Hassani C, Rieger E, Vignolle J, Wurm FR, Carlotti S, Taton D. Eur Polym J, 2017, 95: 746–755

    Article  CAS  Google Scholar 

  26. Wang X, Liu Y, Li Z, Wang H, Gebru H, Chen S, Zhu H, Wei F, Guo K. ACS Macro Lett, 2017, 6: 1331–1336

    Article  CAS  Google Scholar 

  27. Gleede T, Rieger E, Blankenburg J, Klein K, Wurm FR. J Am Chem Soc, 2018, 140: 13407–13412

    Article  CAS  PubMed  Google Scholar 

  28. Yang R, Wang Y, Luo W, Jin Y, Zhang Z, Wu C, Hadjichristidis N. Macromolecules, 2019, 52: 8793–8802

    Article  CAS  Google Scholar 

  29. Wang H, Li J, Li Z, Liu B, Chen K, Zhang Z, Hu Y, Zhou F, Li Y, Guo K. Eur Polym J, 2020, 140: 109999

    Article  CAS  Google Scholar 

  30. Duan XH, Maji B, Mayr H. Org Biomol Chem, 2011, 9: 8046–8050

    Article  CAS  PubMed  Google Scholar 

  31. Boeck PT, Tanaka J, Liu S, You W. Macromolecules, 2020, 53: 4303–4311

    Article  CAS  Google Scholar 

  32. Hosono N, Gochomori M, Matsuda R, Sato H, Kitagawa S. J Am Chem Soc, 2016, 138: 6525–6531

    Article  CAS  PubMed  Google Scholar 

  33. Martynov AV, Makhaeva NA, Amosova SV. Heteroatom Chem, 2018, 29: e21420

    Article  Google Scholar 

  34. Rieger E, Alkan A, Manhart A, Wagner M, Wurm FR. Macromol Rapid Commun, 2016, 37: 833–839

    Article  CAS  PubMed  Google Scholar 

  35. Frisch MJT, Schlegel GW, Scuseria HB, Robb GE, Cheeseman MA, Scalmani JR, Barone G, Mennucci V, Petersson B, Nakatsuji GA, Caricato H, Li M, Hratchian X, Izmaylov HP, Bloino AF, Zheng J, Sonnenberg G, Hada JL, Ehara M, Toyota M, Fukuda K, Hasegawa R, Ishida J, Nakajima M, Honda T, Kitao Y, Nakai O, Vreven H, Montgomery T, Peralta JA, Ogliaro JE, Bearpark F, Heyd M, Brothers JJ, Kudin E, Staroverov KN, Keith VN, Kobayashi T, Normand R, Raghavachari J, Rendell K, Burant A, Iyengar JC, Tomasi SS, Cossi J, Rega M, Millam N, Klene JM, Knox M, Cross JE, Bakken JB, Adamo V, Jaramillo C, Gomperts J, Stratmann R, Yazyev RE, Austin O, Cammi AJ, Pomelli R, Ochterski C, Martin JW, Morokuma RL, Zakrzewski K, Voth VG, Salvador GA, Dannenberg P, Dapprich JJ, Daniels S, Farkas AD, Foresman O, Ortiz JB, Cioslowski JV, Fox DJ. Gaussian 09, revision D 01. Wallingford CT: Gaussian Inc., 2013

    Google Scholar 

  36. Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys, 2010, 132: 154104

    Article  PubMed  Google Scholar 

  37. Grimme S, Ehrlich S, Goerigk L. J Comput Chem, 2011, 32: 1456–1465

    Article  CAS  PubMed  Google Scholar 

  38. Weigend F, Ahlrichs R. Phys Chem Chem Phys, 2005, 7: 3297–3305

    Article  CAS  PubMed  Google Scholar 

  39. Marenich AV, Cramer CJ, Truhlar DG. J Phys Chem B, 2009, 113: 6378–6396

    Article  CAS  PubMed  Google Scholar 

  40. Fukui K. J Phys Chem, 1970, 74: 4161–4163

    Article  CAS  Google Scholar 

  41. Fukui K. Acc Chem Res, 1981, 14: 363–368

    Article  CAS  Google Scholar 

  42. Hua X, Bei FL, Wang X, Yang XJ, Lu LD. Int J Quantum Chem, 2008, 108: 1257–1265

    Article  CAS  Google Scholar 

  43. Lu T, Chen Q. ChemRxiv, 2020, https://doi.org/10.26434/chemrxiv.12278801

  44. Lu T, Manzetti S. Struct Chem, 2014, 25: 1521–1533

    Article  CAS  Google Scholar 

  45. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  46. Humphrey W, Dalke A, Schulten K. J Mol Graphics, 1996, 14: 33–38

    Article  CAS  Google Scholar 

  47. Gleede T, Yu F, Luo YL, Yuan Y, Wang J, Wurm FR. ACS Macro Lett, 2020, 9: 20–25

    Article  CAS  Google Scholar 

  48. Boyer C, Granville A, Davis TP, Bulmus V. J Polym Sci A Polym Chem, 2009, 47: 3773–3794

    Article  CAS  Google Scholar 

  49. Hoyle CE, Bowman CN. Angew Chem Int Ed, 2010, 49: 1540–1573

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21905171, 21774077) and Shanghai Municipal Government (18JC1410800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyang Yu, Chongyin Zhang or Xinyuan Zhu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, M., Bian, Y., Yu, C. et al. Sulfanion-initiated open-vessel anionic ring-opening polymerization (AROP) of N-sulfonyl aziridines. Sci. China Chem. 64, 1778–1785 (2021). https://doi.org/10.1007/s11426-021-1053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1053-y

Navigation