Skip to main content
Log in

Well-balanced ambipolar diketopyrrolopyrrole-based copolymers for OFETs, inverters and frequency doublers

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Conjugated polymers with well-balanced ambipolar charge transport is essential for organic circuits at low cost and large area with simplified fabrication techniques. Aiming at this point, herein, a novel asymmetric thiophene/pyridine-flanked diketopyrrolopyrrole-based copolymer (PPyTDPP–2FBT) is designed and synthesized. Due to the effect of incorporating F atoms on molecular energy alignment and conjugation conformation, the PPyTDPP–2FBT copolymer exhibits typical V-shaped ambipolar field-effect transfer characteristics with well-balanced hole and electron mobilities of 0.64 and 0.46 cm2 V−1 s−1, respectively. Furthermore, organic digital and analog circuits such as inverters and frequency doublers are successfully constructed based on solution-processed films of the PPyTDPP–2FBT copolymers which show a typical circuit operating mode with a high gain of 133 due to the well-balanced electrical properties. In addition, PPyTDPP–2FBT-based devices also demonstrate good stability and batch repeatability, suggesting their great potential applications in organic integrated electronic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. You I, Mackanic DG, Matsuhisa N, Kang J, Kwon J, Beker L, Mun J, Suh W, Kim TY, Tok JBH, Bao Z, Jeong U. Science, 2020, 370: 961–965

    Article  CAS  PubMed  Google Scholar 

  2. Wei X, Zhang W, Yu G. Adv Funct Mater, 2021, 31: 2010979

    Article  CAS  Google Scholar 

  3. Mun J, Kang J, Zheng Y, Luo S, Wu HC, Matsuhisa N, Xu J, Wang GJN, Yun Y, Xue G, Tok JBH, Bao Z. Adv Mater, 2019, 31: 1903912

    Article  CAS  Google Scholar 

  4. Zhang Z, Liu Q, Dong H, Hu W. Sci China Chem, 2019, 62: 1271–1274

    Article  CAS  Google Scholar 

  5. Un HI, Zheng YQ, Shi K, Wang JY, Pei J. Adv Funct Mater, 2017, 27: 1605058

    Article  CAS  Google Scholar 

  6. Wu X, Jia R, Jie J, Zhang M, Pan J, Zhang X, Zhang X. Adv Funct Mater, 2019, 29: 1906653

    Article  CAS  Google Scholar 

  7. Zheng Z, Ni Z, Zhang X, Zhen Y, Dong H, Zhang J, Hu W. Sci China Mater, 2019, 62: 813–822

    Article  CAS  Google Scholar 

  8. Liang J, Li L, Niu X, Yu Z, Pei Q. Nat Photon, 2013, 7: 817–824

    Article  CAS  Google Scholar 

  9. Wu W, Ye S, Tang R, Huang L, Li Q, Yu G, Liu Y, Qin J, Li Z. Polymer, 2012, 53: 3163–3171

    Article  CAS  Google Scholar 

  10. Li C, Xu Y, Liu Y, Ren Z, Ma Y, Yan S. Nano Energy, 2019, 65: 104057

    Article  CAS  Google Scholar 

  11. Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336–1343

    Article  CAS  PubMed  Google Scholar 

  12. Zhou N, Vegiraju S, Yu X, Manley EF, Butler MR, Leonardi MJ, Guo P, Zhao W, Hu Y, Prabakaran K, Chang RPH, Ratner MA, Chen LX, Facchetti A, Chen MC, Marks TJ. J Mater Chem C, 2015, 3: 8932–8941

    Article  CAS  Google Scholar 

  13. Dong T, Lv L, Feng L, Xia Y, Deng W, Ye P, Yang B, Ding S, Facchetti A, Dong H, Huang H. Adv Mater, 2017, 29: 1606025

    Article  CAS  Google Scholar 

  14. Liu KK, Xu X, Wang JL, Zhang C, Ge GY, Zhuang FD, Zhang HJ, Yang C, Peng Q, Pei J. J Mater Chem A, 2019, 7: 24389–24399

    Article  CAS  Google Scholar 

  15. Wang G, Eastham ND, Aldrich TJ, Ma B, Manley EF, Chen Z, Chen LX, de la Cruz MO, Chang RPH, Melkonyan FS, Facchetti A, Marks TJ. Adv Energy Mater, 2018, 8: 1702173

    Article  CAS  Google Scholar 

  16. Xie ZY, Liu D, Zhang YH, Liu QQ, Dong HL, Hu WP. Chem J Chinese U, 2020, 41: 1179–1193

    Google Scholar 

  17. Yao Y, Chen Y, Wang H, Samorì P. SmartMat, 2020, 1: e1009

    Article  Google Scholar 

  18. Yuvaraja S, Nawaz A, Liu Q, Dubal D, Surya SG, Salama KN, Sonar P. Chem Soc Rev, 2020, 49: 3423–3460

    Article  CAS  PubMed  Google Scholar 

  19. Zhou K, Chen H, Dong H, Fang Q, Hu W. Sci China Chem, 2017, 60: 510–515

    Article  CAS  Google Scholar 

  20. Zhou K, Dai K, Liu C, Shen C. SmartMat, 2020, 1: e1010

    Article  Google Scholar 

  21. Zhao G, Dong H, Liao Q, Jiang J, Luo Y, Fu H, Hu W. Nat Commun, 2018, 9: 4790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Huang Y, Gong X, Meng Y, Wang Z, Chen X, Li J, Ji D, Wei Z, Li L, Hu W. Nat Commun, 2021, 12: 21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao W, Ding J, Zou Y, Di CA, Zhu D. Chem Soc Rev, 2020, 49: 7210–7228

    Article  CAS  PubMed  Google Scholar 

  24. Leydecker T, Wang ZM, Torricelli F, Orgiu E. Chem Soc Rev, 2020, 49: 7627–7670

    Article  CAS  PubMed  Google Scholar 

  25. Qin Z, Gao H, Dong H, Hu W. Adv Mater, 2021, 33: 2007149

    Article  CAS  Google Scholar 

  26. Guo YL. Acta Polym Sin, 2020, 51: 448–456

    Google Scholar 

  27. Ni Z, Wang H, Zhao Q, Zhang J, Wei Z, Dong H, Hu W. Adv Mater, 2019, 31: 1806010

    Article  CAS  Google Scholar 

  28. Liu Q, Bottle SE, Sonar P. Adv Mater, 2020, 32: 1903882

    Article  CAS  Google Scholar 

  29. Gu P, Hu M, Ding S, Zhao G, Yao Y, Liu F, Zhang X, Dong H, Wang X, Hu W. Chin Chem Lett, 2018, 29: 1675–1680

    Article  CAS  Google Scholar 

  30. Liu Q, Wang Y, Kohara A, Matsumoto H, Manzhos S, Feron K, Bottle SE, Bell J, Michinobu T, Sonar P. Adv Funct Mater, 2019, 30: 1907452

    Article  CAS  Google Scholar 

  31. Chen H, Guo Y, Yu G, Zhao Y, Zhang J, Gao D, Liu H, Liu Y. Adv Mater, 2012, 24: 4618–4622

    Article  CAS  PubMed  Google Scholar 

  32. Ni Z, Dong H, Wang H, Ding S, Zou Y, Zhao Q, Zhen Y, Liu F, Jiang L, Hu W. Adv Mater, 2018, 30: 1704843

    Article  CAS  Google Scholar 

  33. Yang J, Zhao Z, Wang S, Guo Y, Liu Y. Chem, 2018, 4: 2748–2785

    Article  CAS  Google Scholar 

  34. Ni Z, Wang H, Dong H, Dang Y, Zhao Q, Zhang X, Hu W. Nat Chem, 2019, 11: 271–277

    Article  CAS  PubMed  Google Scholar 

  35. Qiu G, Jiang Z, Ni Z, Wang H, Dong H, Zhang J, Zhang X, Shu Z, Lu K, Zhen Y, Wei Z, Hu W. J Mater Chem C, 2017, 5: 566–572

    Article  CAS  Google Scholar 

  36. Ding S, Ni Z, Hu M, Qiu G, Li J, Ye J, Zhang X, Liu F, Dong H, Hu W. Macromol Rapid Commun, 2018, 39: 1800225

    Article  CAS  Google Scholar 

  37. Jiang Z, Ni Z, Wang H, Wang Z, Zhang J, Qiu G, Fang J, Zhang Y, Dong H, Lu K, Hu W, Wei Z. Polym Chem, 2017, 8: 5603–5610

    Article  CAS  Google Scholar 

  38. Yang CY, Jin WL, Wang J, Ding YF, Nong S, Shi K, Lu Y, Dai YZ, Zhuang FD, Lei T, Di CA, Zhu D, Wang JY, Pei J. Adv Mater, 2018, 30: 1802850

    Article  CAS  Google Scholar 

  39. Huang H, Yang L, Facchetti A, Marks TJ. Chem Rev, 2017, 117: 10291–10318

    Article  CAS  PubMed  Google Scholar 

  40. Yu S, Peng A, Zhang S, Huang H. Sci China Chem, 2018, 61: 1359–1367

    Article  CAS  Google Scholar 

  41. Kim FS, Ahmed E, Subramaniyan S, Jenekhe SA. ACS Appl Mater Interfaces, 2010, 2: 2974–2977

    Article  CAS  PubMed  Google Scholar 

  42. Gentili D, Sonar P, Liscio F, Cramer T, Ferlauto L, Leonardi F, Milita S, Dodabalapur A, Cavallini M. Nano Lett, 2013, 13: 3643–3647

    Article  CAS  PubMed  Google Scholar 

  43. Wang H, Nezich D, Kong J, Palacios T. IEEE Electron Device Lett, 2009, 30: 547–549

    Article  CAS  Google Scholar 

  44. Deng P, Wu B, Lei Y, Cao H, Ong BS. Macromolecules, 2016, 49: 2541–2548

    Article  CAS  Google Scholar 

  45. Rivnay J, Mannsfeld SCB, Miller CE, Salleo A, Toney MF. Chem Rev, 2012, 112: 5488–5519

    Article  CAS  PubMed  Google Scholar 

  46. Tsao HN, Cho D, Andreasen JW, Rouhanipour A, Breiby DW, Pisula W, Müllen K. Adv Mater, 2009, 21: 209–212

    Article  CAS  Google Scholar 

  47. Jiang Y, Chen J, Sun Y, Li Q, Cai Z, Li J, Guo Y, Hu W, Liu Y. Adv Mater, 2019, 31: 1805761

    Article  CAS  Google Scholar 

  48. Zaumseil J, Sirringhaus H. Chem Rev, 2007, 107: 1296–1323

    Article  CAS  PubMed  Google Scholar 

  49. Ling M, Bao Z, Erk P, Koenemann M, Gomez M. Appl Phys Lett, 2007, 90: 093508

    Article  CAS  Google Scholar 

  50. Kitamura M, Arakawa Y. Appl Phys Lett, 2007, 91: 053505

    Article  CAS  Google Scholar 

  51. Zhu W, Yogeesh MN, Yang S, Aldave SH, Kim JS, Sonde S, Tao L, Lu N, Akinwande D. Nano Lett, 2015, 15: 1883–1890

    Article  CAS  PubMed  Google Scholar 

  52. Jariwala D, Sangwan VK, Seo JWT, Xu W, Smith J, Kim CH, Lauhon LJ, Marks TJ, Hersam MC. Nano Lett, 2015, 15: 416–421

    Article  CAS  PubMed  Google Scholar 

  53. Li M, Wang J, Cai X, Liu F, Li X, Wang L, Liao L, Jiang C. Adv Electron Mater, 2018, 4: 1800211

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Ministry of Science and Technology of China (2018YFA0703200, 2017YFA0204503), the National Natural Science Foundation of China (91833306, 61890943, 51725304, 22021002), Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-202012), the Youth Innovation Promotion Association of the Chinese Academy of Sciences, and the National Program for Support of Top-notch Young Professionals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanli Dong.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, Q., Hu, M. et al. Well-balanced ambipolar diketopyrrolopyrrole-based copolymers for OFETs, inverters and frequency doublers. Sci. China Chem. 64, 1410–1416 (2021). https://doi.org/10.1007/s11426-021-1037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1037-3

Keywords

Navigation