Abstract
We report an unprecedented C–H bond functionalization of cyclopropenes enabled by dinuclear gold catalysis. Highly selective C–H allylation, alkynylation and halogenation of cyclopropenes with organic halides have been realized. The reaction does not require strong external oxidants and affords access to functionalized cyclopropenes in moderate to good yields. The reductive elimination process to controllably construct C–C or C–X bonds can be tuned by using different dinuclear gold catalysts.
References
Archambeau A, Miege F, Meyer C, Cossy J. Acc Chem Res, 2015, 48: 1021–1031
Vicente R. Chem Rev, 2021, 121: 162–226
Zhu ZB, Wei Y, Shi M. Chem Soc Rev, 2011, 40: 5534–5563
Li D, Zang W, Bird MJ, Hyland CJT, Shi M. Chem Rev, 2020, https://doi.org/10.1021/acs.chemrev.0c00624
Rubin M, Rubina M, Gevorgyan V. Chem Rev, 2007, 107: 3117–3179
Mato M, Franchino A, Garcıa-Morales C, Echavarren AM. Chem Rev, 2020, https://doi.org/10.1021/acs.chemrev.0c00697
Baird MS. Chem Rev, 2003, 103: 1271–1294
Chuprakov S, Rubin M, Gevorgyan V. J Am Chem Soc, 2005, 127: 3714–3715
Gorin DJ, Toste FD. Nature, 2007, 446: 395–403
Fürstner A, Davies PW. Angew Chem Int Ed, 2007, 46: 3410–3449
Hashmi ASK. Chem Rev, 2007, 107: 3180–3211
Li Z, Brouwer C, He C. Chem Rev, 2008, 108: 3239–3265
Zhang L. Acc Chem Res, 2014, 47: 877–888
Dorel R, Echavarren AM. Chem Rev, 2015, 115: 9028–9072
Huang B, Hu M, Toste FD. Trends Chem, 2020, 2: 707–720
Rocchigiani L, Bochmann M. Chem Rev, 2020, https://doi.org/10.1021/acs.chemrev.0c00552
Hashmi ASK. Gold Bull, 2003, 36: 3–9
Benitez D, Shapiro ND, Tkatchouk E, Wang Y, Goddard III WA, Toste FD. Nat Chem, 2009, 1: 482–486
Zhou Y, Trewyn BG, Angelici RJ, Woo LK. J Am Chem Soc, 2009, 131: 11734–11743
Seidel G, Mynott R, Fürstner A. Angew Chem Int Ed, 2009, 48: 2510–2513
Liu L, Zhang J. Chem Soc Rev, 2016, 45: 506–516
Mulks FF, Antoni PW, Rominger F, Hashmi ASK. Adv Organomet Chem, 2018, 360: 1810–1821
Mulks FF, Hashmi ASK, Faraji S. Organometallics, 2020, 39: 1814–1823
Mulks FF, Antoni PW, Gross JH, Graf J, Rominger F, Hashmi ASK. J Am Chem Soc, 2019, 141: 4687–4695
Yang Y, Antoni P, Zimmer M, Sekine K, Mulks FF, Hu L, Zhang L, Rudolph M, Rominger F, Hashmi ASK. Angew Chem Int Ed, 2019, 58: 5129–5133
Bratsch SG. J Phys Chem Ref Data, 1989, 18: 1–21
Liu K, Li N, Ning Y, Zhu C, Xie J. Chem, 2019, 5: 2718–2730
Xu W, Li M, Qiao L, Xie J. Chem Commun, 2020, 56: 8524–8536
Wang W, Ji CL, Liu K, Zhao CG, Li W, Xie J. Chem Soc Rev, 2021, 50: 1874–1912
Pang Y, Liu G, Huang C, Yuan X, Li W, Xie J. Angew Chem Int Ed, 2020, 59: 12789–12794
Yan Z, Yuan XA, Zhao Y, Zhu C, Xie J. Angew Chem Int Ed, 2018, 57: 12906–12910
Dong J, Yuan XA, Yan Z, Mu L, Ma J, Zhu C, Xie J. Nat Chem, 2021, 13: 182–190
Wang D, Dong J, Fan W, Yuan X, Han J, Xie J. Angew Chem Int Ed, 2020, 59: 8430–8434
Schmidbaur H, Schier A. Chem Soc Rev, 2008, 37: 1931–1951
Schmidbaur H, Raubenheimer HG. Angew Chem Int Ed, 2020, 59: 14748–14771
Hu L, Dietl MC, Han C, Rudolph M, Rominger F, Hashmi ASK. Angew Chem Int Ed, 2021, 60: 10637–10642
Levin MD, Toste FD. Angew Chem Int Ed, 2014, 53: 6211–6215
Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. Nat Commun, 2017, 8: 565
Sherborne GJ, Gevondian AG, Funes-Adoiz I, Dahiya A, Fricke C, Schoenebeck F. Angew Chem Int Ed, 2020, 59: 15543–15548
Chintawar CC, Yadav AK, Patil NT. Angew Chem Int Ed, 2020, 59: 11808–11813
Daley RA, Morrenzin AS, Neufeldt SR, Topczewski JJ. J Am Chem Soc, 2020, 142: 13210–13218
Zhang S, Wang C, Ye X, Shi X. Angew Chem Int Ed, 2020, 59: 20470–20474
Sahoo B, Hopkinson MN, Glorius F. J Am Chem Soc, 2013, 135: 5505–5508
Xie J, Sekine K, Witzel S, Krämer P, Rudolph M, Rominger F, Hashmi ASK. Angew Chem Int Ed, 2018, 57: 16648–16653
Rigoulet M, Thillaye du Boullay O, Amgoune A, Bourissou D. Angew Chem Int Ed, 2020, 59: 16625–16630
Wang J, Zhang S, Xu C, Wojtas L, Akhmedov NG, Chen H, Shi X. Angew Chem Int Ed, 2018, 57: 6915–6920
Dahiya A, Fricke C, Schoenebeck F. J Am Chem Soc, 2020, 142: 7754–7759
Hofer M, Genoux A, Kumar R, Nevado C. Angew Chem Int Ed, 2017, 56: 1021–1025
Cambeiro XC, Ahlsten N, Larrosa I. J Am Chem Soc, 2015, 137: 15636–15639
Peng H, Xi Y, Ronaghi N, Dong B, Akhmedov NG, Shi X. J Am Chem Soc, 2014, 13: 13174–13177
Ball LT, Lloyd-Jones GC, Russell CA. Science, 2012, 337: 1644–1648
Ye X, Peng H, Wei C, Yuan T, Wojtas L, Shi X. Chem, 2018, 4: 1983–1993
Li W, Yuan D, Wang G, Zhao Y, Xie J, Li S, Zhu C. J Am Chem Soc, 2019, 141: 3187–3197
Tkatchouk E, Mankad NP, Benitez D, Goddard III WA, Toste FD. J Am Chem Soc, 2011, 133: 14293–14300
Zhang G, Peng Y, Cui L, Zhang L. Angew Chem Int Ed, 2009, 48: 3112–3115
Li X, Xie X, Sun N, Liu Y. Angew Chem Int Ed, 2017, 56: 6994–6998
Hashmi ASK, Naumann F, Probst R, Bats JW. Angew Chem Int Ed Engl, 1997, 36: 104–106
Hashmi ASK, Naumann F, Bolte M. Organometallics, 1998, 17: 2385–2387
Hashmi ASK, Rivas Nass A, Bats JW, Bolte M. Angew Chem Int Ed, 1999, 38: 3370–3373
Corrie TJA, Ball LT, Russell CA, Lloyd-Jones GC. J Am Chem Soc, 2017, 139: 245–254
Harper MJ, Emmett EJ, Bower JF, Russell CA. J Am Chem Soc, 2017, 139: 12386–12389
Robinson MP, Lloyd-Jones GC. ACS Catal, 2018, 8: 7484–7488
Brenzovich Jr. WE, Brazeau JF, Toste FD. Org Lett, 2010, 12: 4728–4731
CCDC 2018677 (4q), CCDC 2054506 (5h) and CCDC 2054467 (6d) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre viahttps://www.ccdc.cam.ac.uk/data_request/cif
Xia Z, Corcé V, Zhao F, Przybylski C, Espagne A, Jullien L, Le Saux T, Gimbert Y, Dossmann H, Mouriès-Mansuy V, Ollivier C, Fensterbank L. Nat Chem, 2019, 11: 797–805
Cadge JA, Sparkes HA, Bower JF, Russell CA. Angew Chem Int Ed, 2020, 59: 6617–6621
Rodriguez J, Tabey A, Mallet-Ladeira S, Bourissou D. Chem Sci, 2021, https://doi.org/10.1039/d1sc01483h
Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi ASK. Angew Chem Int Ed, 2015, 54: 6046–6050
Yang Y, Schießl J, Zallouz S, Göker V, Gross J, Rudolph M, Rominger F, Hashmi ASK. Chem Eur J, 2019, 25: 9624–9628
Adak T, Schulmeister J, Dietl MC, Rudolph M, Rominger F, Hashmi ASK. Eur J Org Chem, 2019, 2019: 3867–3876
Hashmi ASK. Angew Chem Int Ed, 2010, 49: 5232–5241
Lauterbach T, Asiri AM, Hashmi ASK. Adv Organomet Chem, 2014, 62: 261–297
Alternatively, abstraction of bromide with silver salts for allylic bromides may generate the allyl cation to interact with the cyclopropenyl gold intermediate (9), see [10i]
Wolf WJ, Winston MS, Toste FD. Nat Chem, 2014, 6: 159–164
Selected examples for gold-mediated C-I reductive elimination: Murray HH, Fackler JP, Trzcinska-Bancroft B. Organometallics, 1985, 4: 1633–1637
Winston MS, Wolf WJ, Toste FD. J Am Chem Soc, 2015, 137: 7921–7928
Mankad NP, Toste FD. Chem Sci, 2012, 3: 72–76
Joost M, Amgoune A, Bourissou D. Angew Chem Int Ed, 2015, 54: 15022–15045
Acknowledgements
This work was supported by the National Natural Science Foundation of China (22001116, 22001117, 21971111, 21971108, 21732003), the Natural Science Foundation of Jiangsu Province (BK20190006, BK20190285), the Fundamental Research Funds for the Central Universities (020514380252), the “Innovation & Entrepreneurship Talents Plan” of Jiangsu Province, the Guangdong Basic and Applied Basic Research Foundation (2020A1515110816) and the Foundation of Advanced Catalytic Engineering Research Center of the Ministry of Education of Hunan University. Xiaopeng Wu, Dongping Wang and Wenliang Wang are warmly acknowledged for reproducing experimental procedures for products 4a, 5h and 6d.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest The authors declare no conflict of interest.
Supporting Information
Rights and permissions
About this article
Cite this article
Liu, K., Li, T., Liu, DY. et al. Dinuclear gold-catalyzed C-H bond functionalization of cyclopropenes. Sci. China Chem. 64, 1958–1963 (2021). https://doi.org/10.1007/s11426-021-1031-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11426-021-1031-x