Skip to main content
Log in

Dinuclear gold-catalyzed C-H bond functionalization of cyclopropenes

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We report an unprecedented C–H bond functionalization of cyclopropenes enabled by dinuclear gold catalysis. Highly selective C–H allylation, alkynylation and halogenation of cyclopropenes with organic halides have been realized. The reaction does not require strong external oxidants and affords access to functionalized cyclopropenes in moderate to good yields. The reductive elimination process to controllably construct C–C or C–X bonds can be tuned by using different dinuclear gold catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Archambeau A, Miege F, Meyer C, Cossy J. Acc Chem Res, 2015, 48: 1021–1031

    Article  CAS  PubMed  Google Scholar 

  2. Vicente R. Chem Rev, 2021, 121: 162–226

    Article  CAS  PubMed  Google Scholar 

  3. Zhu ZB, Wei Y, Shi M. Chem Soc Rev, 2011, 40: 5534–5563

    Article  CAS  PubMed  Google Scholar 

  4. Li D, Zang W, Bird MJ, Hyland CJT, Shi M. Chem Rev, 2020, https://doi.org/10.1021/acs.chemrev.0c00624

  5. Rubin M, Rubina M, Gevorgyan V. Chem Rev, 2007, 107: 3117–3179

    Article  CAS  PubMed  Google Scholar 

  6. Mato M, Franchino A, Garcıa-Morales C, Echavarren AM. Chem Rev, 2020, https://doi.org/10.1021/acs.chemrev.0c00697

  7. Baird MS. Chem Rev, 2003, 103: 1271–1294

    Article  CAS  PubMed  Google Scholar 

  8. Chuprakov S, Rubin M, Gevorgyan V. J Am Chem Soc, 2005, 127: 3714–3715

    Article  CAS  PubMed  Google Scholar 

  9. Gorin DJ, Toste FD. Nature, 2007, 446: 395–403

    Article  CAS  PubMed  Google Scholar 

  10. Fürstner A, Davies PW. Angew Chem Int Ed, 2007, 46: 3410–3449

    Article  Google Scholar 

  11. Hashmi ASK. Chem Rev, 2007, 107: 3180–3211

    Article  CAS  PubMed  Google Scholar 

  12. Li Z, Brouwer C, He C. Chem Rev, 2008, 108: 3239–3265

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L. Acc Chem Res, 2014, 47: 877–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dorel R, Echavarren AM. Chem Rev, 2015, 115: 9028–9072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang B, Hu M, Toste FD. Trends Chem, 2020, 2: 707–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rocchigiani L, Bochmann M. Chem Rev, 2020, https://doi.org/10.1021/acs.chemrev.0c00552

  17. Hashmi ASK. Gold Bull, 2003, 36: 3–9

    Article  CAS  Google Scholar 

  18. Benitez D, Shapiro ND, Tkatchouk E, Wang Y, Goddard III WA, Toste FD. Nat Chem, 2009, 1: 482–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou Y, Trewyn BG, Angelici RJ, Woo LK. J Am Chem Soc, 2009, 131: 11734–11743

    Article  CAS  PubMed  Google Scholar 

  20. Seidel G, Mynott R, Fürstner A. Angew Chem Int Ed, 2009, 48: 2510–2513

    Article  CAS  Google Scholar 

  21. Liu L, Zhang J. Chem Soc Rev, 2016, 45: 506–516

    Article  CAS  PubMed  Google Scholar 

  22. Mulks FF, Antoni PW, Rominger F, Hashmi ASK. Adv Organomet Chem, 2018, 360: 1810–1821

    CAS  Google Scholar 

  23. Mulks FF, Hashmi ASK, Faraji S. Organometallics, 2020, 39: 1814–1823

    Article  CAS  Google Scholar 

  24. Mulks FF, Antoni PW, Gross JH, Graf J, Rominger F, Hashmi ASK. J Am Chem Soc, 2019, 141: 4687–4695

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Antoni P, Zimmer M, Sekine K, Mulks FF, Hu L, Zhang L, Rudolph M, Rominger F, Hashmi ASK. Angew Chem Int Ed, 2019, 58: 5129–5133

    Article  CAS  Google Scholar 

  26. Bratsch SG. J Phys Chem Ref Data, 1989, 18: 1–21

    Article  CAS  Google Scholar 

  27. Liu K, Li N, Ning Y, Zhu C, Xie J. Chem, 2019, 5: 2718–2730

    Article  CAS  Google Scholar 

  28. Xu W, Li M, Qiao L, Xie J. Chem Commun, 2020, 56: 8524–8536

    Article  CAS  Google Scholar 

  29. Wang W, Ji CL, Liu K, Zhao CG, Li W, Xie J. Chem Soc Rev, 2021, 50: 1874–1912

    Article  CAS  PubMed  Google Scholar 

  30. Pang Y, Liu G, Huang C, Yuan X, Li W, Xie J. Angew Chem Int Ed, 2020, 59: 12789–12794

    Article  CAS  Google Scholar 

  31. Yan Z, Yuan XA, Zhao Y, Zhu C, Xie J. Angew Chem Int Ed, 2018, 57: 12906–12910

    Article  CAS  Google Scholar 

  32. Dong J, Yuan XA, Yan Z, Mu L, Ma J, Zhu C, Xie J. Nat Chem, 2021, 13: 182–190

    Article  CAS  PubMed  Google Scholar 

  33. Wang D, Dong J, Fan W, Yuan X, Han J, Xie J. Angew Chem Int Ed, 2020, 59: 8430–8434

    Article  CAS  Google Scholar 

  34. Schmidbaur H, Schier A. Chem Soc Rev, 2008, 37: 1931–1951

    Article  CAS  PubMed  Google Scholar 

  35. Schmidbaur H, Raubenheimer HG. Angew Chem Int Ed, 2020, 59: 14748–14771

    Article  CAS  Google Scholar 

  36. Hu L, Dietl MC, Han C, Rudolph M, Rominger F, Hashmi ASK. Angew Chem Int Ed, 2021, 60: 10637–10642

    Article  CAS  Google Scholar 

  37. Levin MD, Toste FD. Angew Chem Int Ed, 2014, 53: 6211–6215

    Article  CAS  Google Scholar 

  38. Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. Nat Commun, 2017, 8: 565

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sherborne GJ, Gevondian AG, Funes-Adoiz I, Dahiya A, Fricke C, Schoenebeck F. Angew Chem Int Ed, 2020, 59: 15543–15548

    Article  CAS  Google Scholar 

  40. Chintawar CC, Yadav AK, Patil NT. Angew Chem Int Ed, 2020, 59: 11808–11813

    Article  CAS  Google Scholar 

  41. Daley RA, Morrenzin AS, Neufeldt SR, Topczewski JJ. J Am Chem Soc, 2020, 142: 13210–13218

    Article  CAS  PubMed  Google Scholar 

  42. Zhang S, Wang C, Ye X, Shi X. Angew Chem Int Ed, 2020, 59: 20470–20474

    Article  CAS  Google Scholar 

  43. Sahoo B, Hopkinson MN, Glorius F. J Am Chem Soc, 2013, 135: 5505–5508

    Article  CAS  PubMed  Google Scholar 

  44. Xie J, Sekine K, Witzel S, Krämer P, Rudolph M, Rominger F, Hashmi ASK. Angew Chem Int Ed, 2018, 57: 16648–16653

    Article  CAS  Google Scholar 

  45. Rigoulet M, Thillaye du Boullay O, Amgoune A, Bourissou D. Angew Chem Int Ed, 2020, 59: 16625–16630

    Article  CAS  Google Scholar 

  46. Wang J, Zhang S, Xu C, Wojtas L, Akhmedov NG, Chen H, Shi X. Angew Chem Int Ed, 2018, 57: 6915–6920

    Article  CAS  Google Scholar 

  47. Dahiya A, Fricke C, Schoenebeck F. J Am Chem Soc, 2020, 142: 7754–7759

    Article  CAS  PubMed  Google Scholar 

  48. Hofer M, Genoux A, Kumar R, Nevado C. Angew Chem Int Ed, 2017, 56: 1021–1025

    Article  CAS  Google Scholar 

  49. Cambeiro XC, Ahlsten N, Larrosa I. J Am Chem Soc, 2015, 137: 15636–15639

    Article  CAS  PubMed  Google Scholar 

  50. Peng H, Xi Y, Ronaghi N, Dong B, Akhmedov NG, Shi X. J Am Chem Soc, 2014, 13: 13174–13177

    Article  Google Scholar 

  51. Ball LT, Lloyd-Jones GC, Russell CA. Science, 2012, 337: 1644–1648

    Article  CAS  PubMed  Google Scholar 

  52. Ye X, Peng H, Wei C, Yuan T, Wojtas L, Shi X. Chem, 2018, 4: 1983–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li W, Yuan D, Wang G, Zhao Y, Xie J, Li S, Zhu C. J Am Chem Soc, 2019, 141: 3187–3197

    Article  CAS  PubMed  Google Scholar 

  54. Tkatchouk E, Mankad NP, Benitez D, Goddard III WA, Toste FD. J Am Chem Soc, 2011, 133: 14293–14300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang G, Peng Y, Cui L, Zhang L. Angew Chem Int Ed, 2009, 48: 3112–3115

    Article  CAS  Google Scholar 

  56. Li X, Xie X, Sun N, Liu Y. Angew Chem Int Ed, 2017, 56: 6994–6998

    Article  CAS  Google Scholar 

  57. Hashmi ASK, Naumann F, Probst R, Bats JW. Angew Chem Int Ed Engl, 1997, 36: 104–106

    Article  CAS  Google Scholar 

  58. Hashmi ASK, Naumann F, Bolte M. Organometallics, 1998, 17: 2385–2387

    Article  CAS  Google Scholar 

  59. Hashmi ASK, Rivas Nass A, Bats JW, Bolte M. Angew Chem Int Ed, 1999, 38: 3370–3373

    Article  CAS  Google Scholar 

  60. Corrie TJA, Ball LT, Russell CA, Lloyd-Jones GC. J Am Chem Soc, 2017, 139: 245–254

    Article  CAS  PubMed  Google Scholar 

  61. Harper MJ, Emmett EJ, Bower JF, Russell CA. J Am Chem Soc, 2017, 139: 12386–12389

    Article  CAS  PubMed  Google Scholar 

  62. Robinson MP, Lloyd-Jones GC. ACS Catal, 2018, 8: 7484–7488

    Article  CAS  Google Scholar 

  63. Brenzovich Jr. WE, Brazeau JF, Toste FD. Org Lett, 2010, 12: 4728–4731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. CCDC 2018677 (4q), CCDC 2054506 (5h) and CCDC 2054467 (6d) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre viahttps://www.ccdc.cam.ac.uk/data_request/cif

  65. Xia Z, Corcé V, Zhao F, Przybylski C, Espagne A, Jullien L, Le Saux T, Gimbert Y, Dossmann H, Mouriès-Mansuy V, Ollivier C, Fensterbank L. Nat Chem, 2019, 11: 797–805

    Article  CAS  PubMed  Google Scholar 

  66. Cadge JA, Sparkes HA, Bower JF, Russell CA. Angew Chem Int Ed, 2020, 59: 6617–6621

    Article  CAS  Google Scholar 

  67. Rodriguez J, Tabey A, Mallet-Ladeira S, Bourissou D. Chem Sci, 2021, https://doi.org/10.1039/d1sc01483h

  68. Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi ASK. Angew Chem Int Ed, 2015, 54: 6046–6050

    Article  CAS  Google Scholar 

  69. Yang Y, Schießl J, Zallouz S, Göker V, Gross J, Rudolph M, Rominger F, Hashmi ASK. Chem Eur J, 2019, 25: 9624–9628

    Article  CAS  PubMed  Google Scholar 

  70. Adak T, Schulmeister J, Dietl MC, Rudolph M, Rominger F, Hashmi ASK. Eur J Org Chem, 2019, 2019: 3867–3876

    Article  CAS  Google Scholar 

  71. Hashmi ASK. Angew Chem Int Ed, 2010, 49: 5232–5241

    Article  CAS  Google Scholar 

  72. Lauterbach T, Asiri AM, Hashmi ASK. Adv Organomet Chem, 2014, 62: 261–297

    Article  CAS  Google Scholar 

  73. Alternatively, abstraction of bromide with silver salts for allylic bromides may generate the allyl cation to interact with the cyclopropenyl gold intermediate (9), see [10i]

  74. Wolf WJ, Winston MS, Toste FD. Nat Chem, 2014, 6: 159–164

    Article  CAS  PubMed  Google Scholar 

  75. Selected examples for gold-mediated C-I reductive elimination: Murray HH, Fackler JP, Trzcinska-Bancroft B. Organometallics, 1985, 4: 1633–1637

    Article  CAS  Google Scholar 

  76. Winston MS, Wolf WJ, Toste FD. J Am Chem Soc, 2015, 137: 7921–7928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mankad NP, Toste FD. Chem Sci, 2012, 3: 72–76

    Article  CAS  PubMed  Google Scholar 

  78. Joost M, Amgoune A, Bourissou D. Angew Chem Int Ed, 2015, 54: 15022–15045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22001116, 22001117, 21971111, 21971108, 21732003), the Natural Science Foundation of Jiangsu Province (BK20190006, BK20190285), the Fundamental Research Funds for the Central Universities (020514380252), the “Innovation & Entrepreneurship Talents Plan” of Jiangsu Province, the Guangdong Basic and Applied Basic Research Foundation (2020A1515110816) and the Foundation of Advanced Catalytic Engineering Research Center of the Ministry of Education of Hunan University. Xiaopeng Wu, Dongping Wang and Wenliang Wang are warmly acknowledged for reproducing experimental procedures for products 4a, 5h and 6d.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Xie.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Li, T., Liu, DY. et al. Dinuclear gold-catalyzed C-H bond functionalization of cyclopropenes. Sci. China Chem. 64, 1958–1963 (2021). https://doi.org/10.1007/s11426-021-1031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1031-x

Keywords

Navigation