Skip to main content
Log in

Anionic passivation layer-assisted trapping of an icosahedral Ag13 kernel in a truncated tetrahedral Ag89 nanocluster

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Isolating reductive silver kernel from shell is a challenging task but is quite important to understand the embryonic form during the formation of silver nanoclusters. The intercalation of suitable anionic species may be of benefit for passivating then capturing such highly active kernel. Herein, we successfully isolated a novel silver thiolate nanocluster [Ag13@Ag76S16(CyhS)42(p-NH2-PhAsO3)4]3+ (SD/Ag89a, CyhSH = cyclohexanethiol) that contains a well-isolated icosahedral Ag13 kernel passivated by four AgS47− tetrahedra and four p-NH2PhAsO32− piercing from outer Ag72 shell. Of note, this Ag13 kernel is the largest isolable subvalent silver kernel beneath the silver shell with extremely legible core-shell boundary ever before and represents a precise embryonic model formed in the reducing Ag(I) to Ag(0) followed by aggregating to large silver nanoparticles. The reductive role of DMF and the introduction of anionic passivation layer (APL) synergistically modulate the reduction kinetics, facilitating the capture of ultrasmall subvalent silver kernel. SD/Ag89a emits in near infrared (NIR) region (λem = 800 nm) at low temperature. The synthetic strategy shown in this work opens up new opportunities for precisely capturing and recognizing diverse reductive silver kernels in different systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Jin R, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG. Science, 2001, 294: 1901–1903

    Article  CAS  PubMed  Google Scholar 

  2. Negishi Y, Nobusada K, Tsukuda T. J Am Chem Soc, 2005, 127: 5261–5270

    Article  CAS  PubMed  Google Scholar 

  3. Hu D, He X, Sun L, Xu G, Jiao L, Zhao L. Sci Bull, 2016, 61: 917–920

    Article  CAS  Google Scholar 

  4. Kurashige W, Niihori Y, Sharma S, Negishi Y. Coord Chem Rev, 2016, 320–321: 238–250

    Article  CAS  Google Scholar 

  5. Yao Q, Chen T, Yuan X, Xie J. Acc Chem Res, 2018, 51: 1338–1348

    Article  CAS  PubMed  Google Scholar 

  6. Jin S, Wang S, Song Y, Zhou M, Zhong J, Zhang J, Xia A, Pei Y, Chen M, Li P, Zhu M. J Am Chem Soc, 2014, 136: 15559–15565

    Article  CAS  PubMed  Google Scholar 

  7. Liu C, Li T, Abroshan H, Li Z, Zhang C, Kim HJ, Li G, Jin R. Nat Commun, 2018, 9: 744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wang Z, Su HF, Kurmoo M, Tung CH, Sun D, Zheng LS. Nat Commun, 2018, 9: 2094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wang Z, Sun HT, Kurmoo M, Liu QY, Zhuang GL, Zhao QQ, Wang XP, Tung CH, Sun D. Chem Sci, 2019, 10: 4862–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Z, Yang FL, Yang Y, Liu QY, Sun D. Chem Commun, 2019, 55: 10296–10299

    Article  CAS  Google Scholar 

  11. Wang Z, Qu QP, Su HF, Huang P, Gupta RK, Liu QY, Tung CH, Sun D, Zheng LS. Sci China Chem, 2020, 63: 16–20

    Article  CAS  Google Scholar 

  12. Desireddy A, Conn BE, Guo J, Yoon B, Barnett RN, Monahan BM, Kirschbaum K, Griffith WP, Whetten RL, Landman U, Bigioni TP. Nature, 2013, 501: 399–402

    Article  CAS  PubMed  Google Scholar 

  13. Ma X, Bai Y, Song Y, Li Q, Lv Y, Zhang H, Yu H, Zhu M. Angew Chem Int Ed, 2020, 59: 17234–17238

    Article  CAS  Google Scholar 

  14. Diecke M, Schrenk C, Schnepf A. Angew Chem Int Ed, 2020, 59: 14418–14422

    Article  CAS  Google Scholar 

  15. Liu JY, Alkan F, Wang Z, Zhang ZY, Kurmoo M, Yan Z, Zhao QQ, Aikens CM, Tung CH, Sun D. Angew Chem Int Ed, 2019, 58: 195–199

    Article  CAS  Google Scholar 

  16. Beesk W, Jones PG, Rumpel H, Schwarzmann E, Sheldrick GM. J Chem Soc Chem Commun, 1981: 664–665

    Google Scholar 

  17. Jansen M, Linke C. Angew Chem Int Ed Engl, 1992, 31: 653–654

    Article  Google Scholar 

  18. Linke C, Jansen M. Inorg Chem, 1994, 33: 2614–2616

    Article  CAS  Google Scholar 

  19. Sun D, Luo GG, Zhang N, Huang RB, Zheng LS. Chem Commun, 2011, 47: 1461–1463

    Article  CAS  Google Scholar 

  20. Kikukawa Y, Kuroda Y, Suzuki K, Hibino M, Yamaguchi K, Mizuno N. Chem Commun, 2013, 49: 376–378

    Article  CAS  Google Scholar 

  21. Liu JW, Wang Z, Chai YM, Kurmoo M, Zhao QQ, Wang XP, Tung CH, Sun D. Angew Chem Int Ed, 2019, 58: 6276–6279

    Article  CAS  Google Scholar 

  22. Su YM, Wang Z, Zhuang GL, Zhao QQ, Wang XP, Tung CH, Sun D. Chem Sci, 2019, 10: 564–568

    Article  CAS  PubMed  Google Scholar 

  23. Wang Z, Su HF, Zhuang GL, Kurmoo M, Tung CH, Sun D, Zheng LS. CCS Chem, 2019, 2: 663–672

    Article  Google Scholar 

  24. Yonesato K, Ito H, Itakura H, Yokogawa D, Kikuchi T, Mizuno N, Yamaguchi K, Suzuki K. J Am Chem Soc, 2019, 141: 19550–19554

    Article  CAS  PubMed  Google Scholar 

  25. Luo GG, Guo QL, Wang Z, Sun CF, Lin JQ, Sun D. Dalton Trans, 2020, 49: 5406–5415

    Article  CAS  PubMed  Google Scholar 

  26. Dhayal RS, Liao JH, Liu YC, Chiang MH, Kahlal S, Saillard JY, Liu CW. Angew Chem Int Ed, 2015, 54: 3702–3706

    Article  CAS  Google Scholar 

  27. Joshi CP, Bootharaju MS, Alhilaly MJ, Bakr OM. J Am Chem Soc, 2015, 137: 11578–11581

    Article  CAS  PubMed  Google Scholar 

  28. AbdulHalim LG, Bootharaju MS, Tang Q, Del Gobbo S, AbdulHalim RG, Eddaoudi M, Jiang D, Bakr OM. J Am Chem Soc, 2015, 137: 11970–11975

    Article  CAS  PubMed  Google Scholar 

  29. Zou X, Jin S, Du W, Li Y, Li P, Wang S, Zhu M. Nanoscale, 2017, 9: 16800–16805

    Article  CAS  PubMed  Google Scholar 

  30. Guan ZJ, Zeng JL, Nan ZA, Wan XK, Lin YM, Wang QM. Sci Adv, 2016, 2: e1600323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hu F, Li JJ, Guan ZJ, Yuan SF, Wang QM. Angew Chem Int Ed, 2020, 59: 5312–5315

    Article  CAS  Google Scholar 

  32. Alhilaly MJ, Bootharaju MS, Joshi CP, Besong TM, Emwas AH, Juarez-Mosqueda R, Kaappa S, Malola S, Adil K, Shkurenko A, Häkkinen H, Eddaoudi M, Bakr OM. J Am Chem Soc, 2016, 138: 14727–14732

    Article  CAS  PubMed  Google Scholar 

  33. Yang H, Wang Y, Chen X, Zhao X, Gu L, Huang H, Yan J, Xu C, Li G, Wu J, Edwards AJ, Dittrich B, Tang Z, Wang D, Lehtovaara L, Häkkinen H, Zheng N. Nat Commun, 2016, 7: 12809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qu M, Li H, Xie LH, Yan ST, Li JR, Wang JH, Wei CY, Wu YW, Zhang XM. J Am Chem Soc, 2017, 139: 12346–12349

    Article  CAS  PubMed  Google Scholar 

  35. Song Y, Lambright K, Zhou M, Kirschbaum K, Xiang J, Xia A, Zhu M, Jin R. ACS Nano, 2018, 12: 9318–9325

    Article  CAS  PubMed  Google Scholar 

  36. Liu J, Ong W, Kaifer AE, Peinador C. Langmuir, 2002, 18: 5981–5983

    Article  CAS  Google Scholar 

  37. Xie YP, Jin JL, Lu X, Mak TCW. Angew Chem Int Ed, 2015, 54: 15176–15180

    Article  CAS  Google Scholar 

  38. Su YM, Su HF, Wang Z, Li YA, Schein S, Zhao QQ, Wang XP, Tung CH, Sun D, Zheng LS. Chem Eur J, 2018, 24: 15096–15103

    Article  CAS  PubMed  Google Scholar 

  39. Heaven MW, Dass A, White PS, Holt KM, Murray RW. J Am Chem Soc, 2008, 130: 3754–3755

    Article  CAS  PubMed  Google Scholar 

  40. Shichibu Y, Konishi K. Small, 2010, 6: 1216–1220

    Article  CAS  PubMed  Google Scholar 

  41. Schmidbaur H, Schier A. Angew Chem Int Ed, 2015, 54: 746–784

    Article  CAS  Google Scholar 

  42. Dhayal RS, Lin YR, Liao JH, Chen YJ, Liu YC, Chiang MH, Kahlal S, Saillard JY, Liu CW. Chem Eur J, 2016, 22: 9943–9947

    Article  CAS  PubMed  Google Scholar 

  43. Xi XJ, Yang JS, Wang JY, Dong XY, Zang SQ. Nanoscale, 2018, 10: 21013–21018

    Article  CAS  PubMed  Google Scholar 

  44. Fenske D, Anson CE, Eichhöfer A, Fuhr O, Ingendoh A, Persau C, Richert C. Angew Chem Int Ed, 2005, 44: 5242–5246

    Article  CAS  Google Scholar 

  45. Pastoriza-Santos I, Liz-Marzán LM. Nano Lett, 2002, 2: 903–905

    Article  CAS  Google Scholar 

  46. Li G, Lei Z, Wang QM. J Am Chem Soc, 2010, 132: 17678–17679

    Article  CAS  PubMed  Google Scholar 

  47. He WM, Zhou Z, Han Z, Li S, Zhou Z, Ma LF, Zang SQ. Angew Chem Int Ed, 2021, 60: 8505–8509

    Article  CAS  Google Scholar 

  48. Yam VWW, Au VKM, Leung SYL. Chem Rev, 2015, 115: 7589–7728

    Article  CAS  PubMed  Google Scholar 

  49. Zhou Y, Liao L, Zhuang S, Zhao Y, Gan Z, Gu W, Li J, Deng H, Xia N, Wu Z. Angew Chem Int Ed, 2021, 60: 8668–8672

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91961105, 21822107, 21827801), the Fok Ying Tong Education Foundation (171009), the Natural Science Foundation of Shandong Province (ZR2019ZD45, JQ201803, ZR2020ZD35), the Taishan Scholar Project of Shandong Province of China (tsqn201812003, ts20190908), the Qilu Youth Scholar Funding of Shandong University, Project for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province (2019KJC028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Sun.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information (SI)

11426_2021_1025_MOESM1_ESM.pdf

Anionic passivation layer assisted trapping an icosahedral Ag{in13} kernel in a truncated tetrahedral Ag{in89} nanocluster

checkCIF/PLATON report

Supplementary material, approximately 5.96 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, YM., Ji, BQ., Wang, Z. et al. Anionic passivation layer-assisted trapping of an icosahedral Ag13 kernel in a truncated tetrahedral Ag89 nanocluster. Sci. China Chem. 64, 1482–1486 (2021). https://doi.org/10.1007/s11426-021-1025-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1025-8

Keywords

Navigation