Skip to main content
Log in

Aryl C-H iodination: are there actual flavin-dependent iodinases in nature?

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Flavin-dependent halogenases (FDHs) are well known to introduce carbon halide bonds (mainly C-Cl and C-Br) into natural products with the assistance of a partner protein flavin reductase to generate reduced flavin (FADH2 or FMNH2). Compared with the common chloride- and bromide-containing natural products (approximately 5,000 compounds), iodinated natural products (approximately 100 compounds) are very limited. Specific iodinases have also rarely been identified in nature to date. This study discovered a novel relationship between iodination and flavin reductases for the first time. Through mechanistic studies, it was identified that peroxide (H2O2) was released from the uncoupling reaction of flavin reductases and then reacted with iodide ions (I) to produce hypoiodous acid (IOH) for the final iodination. Furthermore, this study also unintentionally verified that the recently reported flavin-dependent iodinase VirX1 from the marine virus and its two homologs (MBG and NCV) did not catalyze iodination in the in vitro biochemical system but likely belonged to a new phylogenetic clade in the tryptophan halogenase superfamily. As a consequence, actual flavin-dependent iodinases in nature remain to be discovered by the scientific community in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neumann CS, Fujimori DG, Walsh CT. Chem Biol, 2008, 15: 99–109

    Article  CAS  Google Scholar 

  2. Xu Z, Yang Z, Liu Y, Lu Y, Chen K, Zhu W. J Chem Inf Model, 2014, 54: 69–78

    Article  CAS  Google Scholar 

  3. Jeschke P. Pest Manag Sci, 2010, 66: 10–27

    Article  CAS  Google Scholar 

  4. Ludewig H, Molyneux S, Ferrinho S, Guo K, Lynch R, Gkotsi DS, Goss RJ. Curr Opin Struct Biol, 2020, 65: 51–60

    Article  CAS  Google Scholar 

  5. Felpin FX, Sengupta S. Chem Soc Rev, 2019, 48: 1150–1193

    Article  CAS  Google Scholar 

  6. Ruiz-Castillo P, Buchwald SL. Chem Rev, 2016, 116: 12564–12649

    Article  CAS  Google Scholar 

  7. Schmidt R, Stolle A, Ondruschka B. Green Chem, 2012, 14: 1673–1679

    Article  CAS  Google Scholar 

  8. Prakash GKS, Mathew T, Hoole D, Esteves PM, Wang Q, Rasul G, Olah GA. J Am Chem Soc, 2004, 126: 15770–15776

    Article  CAS  Google Scholar 

  9. Gkotsi DS, Dhaliwal J, McLachlan MM, Mulholand KR, Goss RJ. Curr Opin Chem Biol, 2018, 43: 119–126

    Article  CAS  Google Scholar 

  10. Yeh E, Garneau S, Walsh CT. Proc Natl Acad Sci USA, 2005, 102: 3960–3965

    Article  CAS  Google Scholar 

  11. Eustáquio AS, Pojer F, Noel JP, Moore BS. Nat Chem Biol, 2008, 4: 69–74

    Article  Google Scholar 

  12. Mitchell AJ, Zhu Q, Maggiolo AO, Ananth NR, Hillwig ML, Liu X, Boal AK. Nat Chem Biol, 2016, 12: 636–640

    Article  CAS  Google Scholar 

  13. Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C. Archives Biochem Biophys, 2006, 445: 199–213

    Article  Google Scholar 

  14. Carvalho DP, Dupuy C. Mol Cellular Endocrinol, 2017, 458: 6–15

    Article  CAS  Google Scholar 

  15. Gkotsi DS, Ludewig H, Sharma SV, Connolly JA, Dhaliwal J, Wang Y, Unsworth WP, Taylor RJK, McLachlan MMW, Shanahan S, Naismith JH, Goss RJM. Nat Chem, 2019, 11: 1091–1097

    Article  CAS  Google Scholar 

  16. Schnepel C, Turner NJ. Nat Chem, 2019, 11: 1076–1078

    Article  CAS  Google Scholar 

  17. van Pée KH, Ligon JM. Nat Prod Rep, 2000, 17: 157–164

    Article  Google Scholar 

  18. Dong C, Flecks S, Unversucht S, Haupt C, van Pée KH, Naismith JH. Science, 2005, 309: 2216–2219

    Article  CAS  Google Scholar 

  19. Payne JT, Andorfer MC, Lewis JC. Angew Chem Int Ed, 2013, 52: 5271–5274

    Article  CAS  Google Scholar 

  20. Tiwari MK, Singh RK, Lee JK, Zhao H. Bioorg Medicinal Chem Lett, 2012, 22: 1344–1347

    Article  CAS  Google Scholar 

  21. Lee JK, Zhao H. J Bacteriol, 2007, 189: 8556–8563

    Article  CAS  Google Scholar 

  22. Ingelman M, Ramaswamy S, Nivière V, Fontecave M, Eklund H. Biochemistry, 1999, 38: 7040–7049

    Article  CAS  Google Scholar 

  23. Shepherd SA, Menon BRK, Fisk H, Struck AW, Levy C, Leys D, Micklefield J. ChemBioChem, 2016, 17: 821–824

    Article  CAS  Google Scholar 

  24. Sun K, Lv Y, Wang J, Sun J, Liu L, Jia M, Liu X, Li Z, Wang X. Org Lett, 2015, 17: 4408–4411

    Article  Google Scholar 

  25. Holtmann D, Hollmann F. ChemBioChem, 2016, 17: 1391–1398

    Article  CAS  Google Scholar 

  26. Blasiak LC, Drennan CL. Acc Chem Res, 2009, 42: 147–155

    Article  CAS  Google Scholar 

  27. Neubauer PR, Widmann C, Wibberg D, Schröder L, Frese M, Kottke T, Kalinowski J, Niemann HH, Sewald N. PLoS ONE, 2018, 13: e0196797

    Article  Google Scholar 

  28. Ismail M, Frese M, Patschkowski T, Ortseifen V, Niehaus K, Sewald N. Adv Synth Catal, 2019, 361: 2475–2486

    Article  CAS  Google Scholar 

  29. Widmann C, Ismail M, Sewald N, Niemann HH. Acta Crystlogr D Struct Biol, 2020, 76: 687–697

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. B. Dai and J. Wu at the Instrumental Analysis Center of Shanghai Jiao Tong University for making NMR experiments. This work was supported by the National Natural Science Foundation of China (21632007, 21661140002 for S. Lin; 81903525 for Y. Zhang), Research Fund for High-level Talents of Xinxiang Medical University (300-505272), and Open Funding Project of State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University (MMLKF20-11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuyang Zhang or Shuangjun Lin.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, L., Chen, H. et al. Aryl C-H iodination: are there actual flavin-dependent iodinases in nature?. Sci. China Chem. 64, 1730–1735 (2021). https://doi.org/10.1007/s11426-021-1018-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1018-0

Keywords

Navigation