Skip to main content
Log in

Synthesis of structurally diversified BINOLs and NOBINs via palladium-catalyzed C-H arylation with diazoquinones

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Privileged biaryl frameworks, BINOL and NOBIN, were efficiently constructed with sole 1-DNQs as arylation reagents under one set of reaction conditions. The judicious selection of palladium-catalytic system plays a pivotal role in the excellent selectivities. This transformation accommodated fairly broad substrate generality for both 2-naphthol and N-Boc-2-naphthylamine and afforded the structurally diversified BINOLs and NOBIN derivatives in high efficiency. Notably, the bromo-substituents which cannot survive in conventional palladium-catalyzed reactions were well-compatible with this set of conditions, providing an effective handle for further enriching the library of BINOLs and NOBINs. Preliminary attempts on the asymmetric variant of this reaction were also performed with up to 80:20 er for BINOLs synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pu L. Chem Rev, 1998, 98: 2405–2494

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Yekta S, Yudin AK. Chem Rev, 2003, 103: 3155–3212

    Article  CAS  PubMed  Google Scholar 

  3. Kočovský P, Vyskočil Š, Smrčina M. Chem Rev, 2003, 103: 3213–3246

    Article  PubMed  CAS  Google Scholar 

  4. Brunel JM. Chem Rev, 2005, 105: 857–898

    Article  CAS  PubMed  Google Scholar 

  5. Ding K, Li X, Ji B, Guo H, Kitamura M. COS, 2005, 2: 499–545

    Article  CAS  Google Scholar 

  6. Ding K, Guo H, Li X, Yuan Y, Wang Y. Top Catal, 2005, 35: 105–116

    Article  CAS  Google Scholar 

  7. Bringmann G, Gulder T, Gulder TAM, Breuning M. Chem Rev, 2011, 111: 563–639

    Article  CAS  PubMed  Google Scholar 

  8. McCormick MH, McGuire JM, Pittenger GE, Pittenger RC, Stark WM. Antibiot Annu, 1955–1956, 3: 606–611

    PubMed  Google Scholar 

  9. Bremner JB, Keller PA, Pyne SG, Boyle TP, Brkic Z, David DM, Robertson M, Somphol K, Baylis D, Coates JA, Deadman J, Jeevarajah D, Rhodes DI. BioOrg Medicinal Chem, 2010, 18: 2611–2620

    Article  CAS  Google Scholar 

  10. Pu L. Acc Chem Res, 2012, 45: 150–163

    Article  CAS  PubMed  Google Scholar 

  11. Takaishi K, Yasui M, Ema T. J Am Chem Soc, 2018, 140: 5334–5338

    Article  CAS  PubMed  Google Scholar 

  12. Cui Y, Lee SJ, Lin W. J Am Chem Soc, 2003, 125: 6014–6015

    Article  CAS  PubMed  Google Scholar 

  13. For selected examples, see: (a) Dewar MJS, Nakaya T. J Am Chem Soc, 1968, 90: 7134–7135

    Article  CAS  Google Scholar 

  14. Hovorka M, Günterová J, Závada J. Tetrahedron Lett, 1990, 31: 413–416

    Article  CAS  Google Scholar 

  15. Li X, Yang J, Kozlowski MC. Org Lett, 2001, 3: 1137–1140

    Article  CAS  PubMed  Google Scholar 

  16. Guo QX, Wu ZJ, Luo ZB, Liu QZ, Ye JL, Luo SW, Cun LF, Gong LZ. J Am Chem Soc, 2007, 129: 13927–13938

    Article  CAS  PubMed  Google Scholar 

  17. Egami H, Katsuki T. J Am Chem Soc, 2009, 131: 6082–6083

    Article  CAS  PubMed  Google Scholar 

  18. Narute S, Parnes R, Toste FD, Pappo D. J Am Chem Soc, 2016, 138: 16553–16560

    Article  CAS  PubMed  Google Scholar 

  19. Tian J, Wang A, Yang J, Zhao X, Tu Y, Zhang S, Chen Z. Angew Chem Int Ed, 2019, 58: 11023–11027

    Article  CAS  Google Scholar 

  20. Shen D, Xu Y, Shi SL. J Am Chem Soc, 2019, 141: 14938–14945

    Article  CAS  PubMed  Google Scholar 

  21. Hayashi H, Ueno T, Kim C, Uchida T. Org Lett, 2020, 22: 1469–1474

    Article  CAS  PubMed  Google Scholar 

  22. Qiu H, Shuai B, Wang YZ, Liu D, Chen YG, Gao PS, Ma HX, Chen S, Mei TS. J Am Chem Soc, 2020, 142: 9872–9878

    Article  CAS  PubMed  Google Scholar 

  23. Chen YH, Cheng DJ, Zhang J, Wang Y, Liu XY, Tan B. J Am Chem Soc, 2015, 137: 15062–15065

    Article  CAS  PubMed  Google Scholar 

  24. Moliterno M, Cari R, Puglisi A, Antenucci A, Sperandio C, Moretti E, Di Sabato A, Salvio R, Bella M. Angew Chem Int Ed, 2016, 55: 6525–6529

    Article  CAS  Google Scholar 

  25. Coombs G, Sak MH, Miller SJ. Angew Chem Int Ed, 2020, 59: 2875–2880

    Article  CAS  Google Scholar 

  26. Wang JZ, Zhou J, Xu C, Sun H, Kürti L, Xu QL. J Am Chem Soc, 2016, 138: 5202–5205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen YH, Qi LW, Fang F, Tan B. Angew Chem Int Ed, 2017, 56: 16308–16312

    Article  CAS  Google Scholar 

  28. Zhang J, Qi L, Li S, Xiang S, Tan B. Chin J Chem, 2020, 38: 1503–1514

    Article  CAS  Google Scholar 

  29. Zhang SS, Jiang CY, Wu JQ, Liu XG, Li Q, Huang ZS, Li D, Wang H. Chem Commun, 2015, 51: 10240–10243

    Article  CAS  Google Scholar 

  30. Jia ZJ, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew Chem Int Ed, 2017, 56: 2429–2434

    Article  CAS  Google Scholar 

  31. Liu Z, Wu JQ, Yang SD. Org Lett, 2017, 19: 5434–5437

    Article  CAS  PubMed  Google Scholar 

  32. Somai Magar KB, Edison TNJI, Lee YR. Eur J Org Chem, 2017, 47: 7046–7054

    Article  CAS  Google Scholar 

  33. Wu K, Cao B, Zhou CY, Che CM. Chem Eur J, 2018, 24: 4815–4819

    Article  CAS  PubMed  Google Scholar 

  34. Jang YS, Woźniak Ł, Pedroni J, Cramer N. Angew Chem Int Ed, 2018, 57: 12901–12905

    Article  CAS  Google Scholar 

  35. Takahashi S, Shimooka H, Okauchi T, Kitamura M. Chem Lett, 2019, 48: 28–31

    Article  CAS  Google Scholar 

  36. Wu K, Wu L, Zhou C, Che C. Angew Chem Int Ed, 2020, 59: 16202–16208

    Article  CAS  Google Scholar 

  37. Wang H, Richard Y, Wan Q, Zhou C, Che C. Angew Chem Int Ed, 2020, 59: 1845–1850

    Article  CAS  Google Scholar 

  38. Wang YB, Tan B. Acc Chem Res, 2018, 51: 534–547

    Article  CAS  PubMed  Google Scholar 

  39. Qi LW, Li S, Xiang SH, Wang JJ, Tan B. Nat Catal, 2019, 2: 314–323

    Article  CAS  Google Scholar 

  40. Ding WY, Yu P, An QJ, Bay KL, Xiang SH, Li S, Chen Y, Houk KN, Tan B. Chem, 2020, 6: 2046–2059

    Article  CAS  Google Scholar 

  41. Yan S, Xia W, Li S, Song Q, Xiang SH, Tan B. J Am Chem Soc, 2020, 142: 7322–7327

    Article  CAS  PubMed  Google Scholar 

  42. For reviews, see: (a) Miller DJ, Moody CJ. Tetrahedron, 1995, 51: 10811–10843; For selected examples, see

    Article  CAS  Google Scholar 

  43. Yates P. J Am Chem Soc, 1952, 74: 5376–5381

    Article  CAS  Google Scholar 

  44. Maier TC, Fu GC. J Am Chem Soc, 2006, 128: 4594–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen C, Zhu SF, Liu B, Wang LX, Zhou QL. J Am Chem Soc, 2007, 129: 12616–12617

    Article  CAS  PubMed  Google Scholar 

  46. Xie XL, Zhu SF, Guo JX, Cai Y, Zhou QL. Angew Chem Int Ed, 2014, 53: 2978–2981

    Article  CAS  Google Scholar 

  47. Yu Z, Ma B, Chen M, Wu HH, Liu L, Zhang J. J Am Chem Soc, 2014, 136: 6904–6907

    Article  CAS  PubMed  Google Scholar 

  48. Yu Z, Li Y, Zhang P, Liu L, Zhang J. Chem Sci, 2019, 10: 6553–6559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma B, Tang Z, Zhang J, Liu L. Chem Commun, 2020, 56: 9485–9488

    Article  CAS  Google Scholar 

  50. Li X, Wang J, Xie X, Dai W, Han X, Chen K, Liu H. Chem Commun, 2020, 56: 3441–3444

    Article  CAS  Google Scholar 

  51. Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew Chem Int Ed, 2004, 43: 1566–1568

    Article  CAS  Google Scholar 

  52. Uraguchi D, Terada M. J Am Chem Soc, 2004, 126: 5356–5357

    Article  CAS  PubMed  Google Scholar 

  53. Volla CMR, Atodiresei I, Rueping M. Chem Rev, 2014, 114: 2390–2431

    Article  CAS  PubMed  Google Scholar 

  54. Zhu SF, Zhou QL. Acc Chem Res, 2012, 45: 1365–1377

    Article  CAS  PubMed  Google Scholar 

  55. Guo X, Hu W. Acc Chem Res, 2013, 46: 2427–2440

    Article  CAS  PubMed  Google Scholar 

  56. Xia Y, Qiu D, Wang J. Chem Rev, 2017, 117: 13810–13889

    Article  CAS  PubMed  Google Scholar 

  57. Xiao Q, Zhang Y, Wang J. Acc Chem Res, 2013, 46: 236–247

    Article  CAS  PubMed  Google Scholar 

  58. Liu Y, Yu Z, Zhang JZ, Liu L, Xia F, Zhang J. Chem Sci, 2016, 7: 1988–1995

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21825105), the Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), the Guangdong Innovative Program (2019BT02Y335), the Shenzhen Nobel Prize Scientists Laboratory Project (C17213101), and the SUSTech Special Fund for the Construction of High-Level Universities (G02216402). The authors appreciate the assistance of SUSTech Core Research Facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JW., Jiang, F., Chen, YH. et al. Synthesis of structurally diversified BINOLs and NOBINs via palladium-catalyzed C-H arylation with diazoquinones. Sci. China Chem. 64, 1515–1521 (2021). https://doi.org/10.1007/s11426-021-1003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1003-9

Keywords

Navigation