Skip to main content

The selective deposition of Fe species inside ZSM-5 for the oxidation of cyclohexane to cyclohexanone


The design of efficient iron-based catalysts remains a great challenge for selective cyclohexane oxidation to cyclohexanone under mild conditions. Because of the complex distribution of iron location on the support, the selectivity is always low. Here, we report a general strategy to selectively deposit highly-dispersed FeOx into the micropore of ZSM-5 by atomic layer deposition (ALD). The framework of ZSM-5 and the Brønsted acid sites are intact during ALD, and the Fe species are selectively deposited onto the defect and Lewis acid sites of ZSM-5. Besides, more Fe-O-Si bonds are formed over FeOx/ZSM-5 with a low loading of Fe, while FeOx nanoparticles are generated at high Fe loading. They cannot be realized by the traditional solution method. The obtained FeOx/ZSM-5 catalysts perform high selectivity of cyclohexanone (92%–97%), and ALD cycle numbers of FeOx control the activity. Compared with the Fe nanoparticles, the Fe-O-Si species performs higher turnover frequency and stability in the oxidation reaction.

This is a preview of subscription content, access via your institution.


  1. 1

    Lee S, Halder A, Ferguson GA, Seifert S, Winans RE, Teschner D, Schlögl R, Papaefthimiou V, Greeley J, Curtiss LA, Vajda S. Nat Commun, 2019, 10: 954

    PubMed  PubMed Central  Google Scholar 

  2. 2

    Yang B, Fu Z, Su A, She J, Chen M, Tang S, Hu W, Zhang C, Liu Y. Appl Catal B-Environ, 2019, 242: 249–257

    CAS  Google Scholar 

  3. 3

    Shylesh S, Samuel PP, Singh AP. Appl Catal A-General, 2007, 318: 128–136

    CAS  Google Scholar 

  4. 4

    Huang X, Zhao G, Wang P, Zheng H, Dong W, Wang G. ChemCatChem, 2018, 10: 1406–1413

    CAS  Google Scholar 

  5. 5

    Wan S, Li M, Zhang Z, Xi H, Yang H, Luo Q, Zhu WH. Sci China Chem, 2020, 63: 1191–1197

    CAS  Google Scholar 

  6. 6

    Xue K, Yang B, Wu P. Sci China Chem, 2015, 58: 139–147

    CAS  Google Scholar 

  7. 7

    Shahzeydi A, Ghiaci M, Farrokhpour H, Shahvar A, Sun M, Saraji M. Chem Eng J, 2019, 370: 1310–1321

    CAS  Google Scholar 

  8. 8

    Wang JY, Zhao FY, Liu RJ, Hu YQ. J Mol Catal A-Chem, 2008, 279: 153–158

    CAS  Google Scholar 

  9. 9

    Hao J, Wang J, Wang Q, Yu Y, Cai S, Zhao F. Appl Catal A-General, 2009, 368: 29–34

    CAS  Google Scholar 

  10. 10

    Acharyya SS, Ghosh S, Bal R. Green Chem, 2015, 17: 3490–3499

    CAS  Google Scholar 

  11. 11

    Sirajuddin S, Rosenzweig AC. Biochemistry, 2015, 54: 2283–2294

    CAS  PubMed  Google Scholar 

  12. 12

    Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI. Chem Rev, 2017, 117: 8574–8621

    CAS  PubMed  Google Scholar 

  13. 13

    Murahashi S, Oda Y, Naota T. J Am Chem Soc, 1992, 114: 7913–7914

    CAS  Google Scholar 

  14. 14

    Sun CL, Li BJ, Shi ZJ. Chem Rev, 2011, 111: 1293–1314

    CAS  PubMed  Google Scholar 

  15. 15

    Van-Dúnem V, Carvalho AP, Martins LMDRS, Martins A. ChemCatChem, 2018, 10: 4058–4066

    Google Scholar 

  16. 16

    Graça I, Chadwick D. Microporous Mesoporous Mater, 2020, 294: 109873

    Google Scholar 

  17. 17

    George SM. Chem Rev, 2010, 110: 111–131

    CAS  PubMed  Google Scholar 

  18. 18

    Ge H, Zhang B, Gu X, Liang H, Yang H, Gao Z, Wang J, Qin Y. Angew Chem Int Ed, 2016, 55: 7081–7085

    CAS  Google Scholar 

  19. 19

    Zhang B, Qin Y. ACS Catal, 2018, 8: 10064–10081

    CAS  Google Scholar 

  20. 20

    Wu H, Zhang B, Liang H, Zhai L, Wang G, Qin Y. The Innovation, 2020, 1: 100029

    Google Scholar 

  21. 21

    Zhang B, Guo XW, Liang H, Ge H, Gu X, Chen S, Yang H, Qin Y. ACS Catal, 2016, 6: 6560–6566

    CAS  Google Scholar 

  22. 22

    Liang H, Zhang B, Ge H, Gu X, Zhang S, Qin Y. ACS Catal, 2017, 7: 6567–6572

    CAS  Google Scholar 

  23. 23

    Wang N, Sun Q, Bai R, Li X, Guo G, Yu J. J Am Chem Soc, 2016, 138: 7484–7487

    CAS  PubMed  Google Scholar 

  24. 24

    Iliopoulou EF, Stefanidis SD, Kalogiannis KG, Delimitis A, Lappas AA, Triantafyllidis KS. Appl Catal B-Environ, 2012, 127: 281–290

    CAS  Google Scholar 

  25. 25

    Yamashita T, Hayes P. Appl Surf Sci, 2008, 254: 2441–2449

    CAS  Google Scholar 

  26. 26

    Tan P. J Catal, 2016, 338: 21–29

    CAS  Google Scholar 

  27. 27

    Rostamizadeh M, Yaripour F. Fuel, 2016, 181: 537–546

    CAS  Google Scholar 

  28. 28

    Zhao Y, Yuan B, Zheng Z, Hao R. J Hazard Mater, 2019, 362: 266–274

    CAS  PubMed  Google Scholar 

  29. 29

    Yan Y, Jiang S, Zhang H, Zhang X. Chem Eng J, 2015, 259: 243–251

    CAS  Google Scholar 

  30. 30

    Gu X, Zhang B, Liang H, Ge H, Yang H, Qin Y. J Fuel Chem Tech, 2017, 45: 714–722

    CAS  Google Scholar 

  31. 31

    Long Y, Liu S, Fei Y, Li Q, Deng Y. Sci China Chem, 2017, 60: 964–969

    CAS  Google Scholar 

  32. 32

    Lin Q, Li J, Ma L, Hao J. Catal Today, 2010, 151: 251–256

    CAS  Google Scholar 

  33. 33

    Zhang T, Liu J, Wang D, Zhao Z, Wei Y, Cheng K, Jiang G, Duan A. Appl Catal B-Environ, 2014, 148–149: 520–531

    Google Scholar 

  34. 34

    Li C. J Catal, 2003, 216: 203–212

    CAS  Google Scholar 

  35. 35

    Sun K, Fan F, Xia H, Feng Z, Li WX, Li C. J Phys Chem C, 2008, 112: 16036–16041

    CAS  Google Scholar 

  36. 36

    Hammond C, Hermans I, Dimitratos N. ChemCatChem, 2015, 7: 434–440

    CAS  Google Scholar 

  37. 37

    Chen J, Draksharapu A, Angelone D, Unjaroen D, Padamati SK, Hage R, Swart M, Duboc C, Browne WR. ACS Catal, 2018, 8: 9665–9674

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Wang X, Zhang Q, Yang S, Wang Y. J Phys Chem B, 2005, 109: 23500–23508

    CAS  PubMed  Google Scholar 

  39. 39

    Zhilinskaya EA, Delahay G, Mauvezin M, Coq B, Aboukaïs A. Langmuir, 2003, 19: 3596–3602

    CAS  Google Scholar 

  40. 40

    Berrier E, Ovsitser O, Kondratenko E, Schwidder M, Grunert W, Bruckner A. J Catal, 2007, 249: 67–78

    CAS  Google Scholar 

  41. 41

    Rana BS, Singh B, Kumar R, Verma D, Bhunia MK, Bhaumik A, Sinha AK. J Mater Chem, 2010, 20: 8575

    CAS  Google Scholar 

  42. 42

    Pérez Vélez R, Ellmers I, Huang H, Bentrup U, Schünemann V, Grünert W, Brückner A. J Catal, 2014, 316: 103–111

    Google Scholar 

  43. 43

    Gao F, Zheng Y, Kukkadapu RK, Wang Y, Walter ED, Schwenzer B, Szanyi J, Peden CHF. ACS Catal, 2016, 6: 2939–2954

    CAS  Google Scholar 

  44. 44

    Esmelindro MC, Oestreicher EG, Márquez-Alvarez H, Dariva C, Egues SMS, Fernandes C, Bortoluzzi AJ, Drago V, Antunes OAC. J InOrg Biochem, 2005, 99: 2054–2061

    CAS  PubMed  Google Scholar 

  45. 45

    Ribeiro APC, Martins LMDRS, Kuznetsov ML, Pombeiro AJL. Organometallics, 2016, 36: 192–198

    Google Scholar 

  46. 46

    Zhou L, Xu J, Chen C, Wang F, Li X. J Porous Mater, 2006, 15: 7–12

    Google Scholar 

  47. 47

    Wang Y, Zhu J, Li C, Li C, Chen L, Chen M, Wang J. Appl Chem Ind, 2009, 38: 1427–1430

    CAS  Google Scholar 

  48. 48

    Bilis G, Christoforidis KC, Deligiannakis Y, Louloudi M. Catal Today, 2010, 157: 101–106

    CAS  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (21872160, U1832208), the National Science Fund for Distinguished Young Scholars (21825204), the National Key R&D Program of China (2017YFA0700101 and 2018YFB1501602), the Youth Innovation Promotion Association CAS (2017204), and Natural Science Foundation of Shanxi Province (201901D211591).

Author information



Corresponding author

Correspondence to Bin Zhang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at and The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhai, L., Zhang, B., Liang, H. et al. The selective deposition of Fe species inside ZSM-5 for the oxidation of cyclohexane to cyclohexanone. Sci. China Chem. 64, 1088–1095 (2021).

Download citation


  • atomic layer deposition
  • selective oxidation of cyclohexane
  • iron oxide
  • FeOx/ZSM-5
  • Fe-O-Si species