Skip to main content
Log in

Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Owing to excellent conductivity and abundant surface terminals, MXene-based heterostructures have been intensively investigated as energy storage materials. However, elaborate design of the structure and composition of MXene-based hybrids towards superior electrochemical performance is still challenging. Herein, we present an ingenious leaf-inspired design for preparing a unique Sb2S3/nitrogen-doped Ti3C2Tx MXene (L-Sb2S3/Ti3C2) hybrid. In-situ TEM observations reveal that the leaflike Sb2S3 nanoparticles with numerous mesopores can well relieve the large volume changes via an inward pore filling mechanism with only 20% outward expansion, whereas highly conductive N-doped Ti3C2Tx nanosheets can serve as the robust mechanical support to reinforce the structural integrity of the hybrid. Benefiting from the structural and constituent merits, the L-Sb2S3/Ti3C2 anode fabricated exhibits a fast sodium storage behavior in terms of outstanding rate capability (339.5 mA h g−1 at 2,000 mA g−1) and high reversible capacity at high current density (358.2 mA h g−1 at 1,000 mA g−1 after 100 cycles). Electrochemical kinetic tests and theoretical simulation further manifest that the boosted electrochemical performance mainly arises from such a unique leaf-like Sb2S3 mesoporous nanostructure with abundant active sites, and enhanced Na+ adsorption energy on the heterojunction formed between Sb2S3 nanoparticles and Ti3C2 matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y. Nat Nanotech, 2014, 9: 555–562

    Article  CAS  Google Scholar 

  2. Xu G, Nie P, Dou H, Ding B, Li L, Zhang X. Mater Today, 2017, 20: 191–209

    Article  CAS  Google Scholar 

  3. McAdon MH, Goddard William A. I. J Chem Phys, 1988, 88: 277–302

    Article  CAS  Google Scholar 

  4. Li L, Zheng Y, Zhang S, Yang J, Shao Z, Guo Z. Energy Environ Sci, 2018, 11: 2310–2340

    Article  CAS  Google Scholar 

  5. Hwang SM, Kim J, Kim Y, Kim Y. J Mater Chem A, 2016, 4: 17946–17951

    Article  CAS  Google Scholar 

  6. Geng H, Peng Y, Qu L, Zhang H, Wu M. Adv Energy Mater, 2020, 10: 1903030

    Article  CAS  Google Scholar 

  7. He H, Gan Q, Wang H, Xu GL, Zhang X, Huang D, Fu F, Tang Y, Amine K, Shao M. Nano Energy, 2018, 44: 217–227

    Article  CAS  Google Scholar 

  8. Lei Z, Xu L, Jiao Y, Du A, Zhang Y, Zhang H. Small, 2018, 14: 1704410

    Article  Google Scholar 

  9. Yousaf M, Chen Y, Tabassum H, Wang Z, Wang Y, Abid AY, Mahmood A, Mahmood N, Guo S, Han RPS, Gao P. Adv Sci, 2020, 7: 1902907

    Article  CAS  Google Scholar 

  10. Sun M, Wang Z, Ni J, Li L. Adv Funct Mater, 2020, 30: 1910043

    Article  CAS  Google Scholar 

  11. Liu Y, Yang C, Zhang Q, Liu M. Energy Storage Mater, 2019, 22: 66–95

    Article  Google Scholar 

  12. Zhang Y, Zhan R, Xu Q, Liu H, Tao M, Luo Y, Bao S, Li C, Xu M. Chem Eng J, 2019, 357: 220–225

    Article  CAS  Google Scholar 

  13. Zuo X, Chang K, Zhao J, Xie Z, Tang H, Li B, Chang Z. J Mater Chem A, 2016, 4: 51–58

    Article  CAS  Google Scholar 

  14. Wang T, Shen D, Liu H, Chen H, Liu Q, Lu B. ACS Appl Mater Interfaces, 2020, 12: 57907–57915

    Article  CAS  Google Scholar 

  15. Zhong W, Tao M, Tang W, Gao W, Yang T, Zhang Y, Zhan R, Bao SJ, Xu M. Chem Eng J, 2019, 378: 122209

    Article  CAS  Google Scholar 

  16. Xiong X, Wang G, Lin Y, Wang Y, Ou X, Zheng F, Yang C, Wang JH, Liu M. ACS Nano, 2016, 10: 10953–10959

    Article  CAS  Google Scholar 

  17. Ding J, Tang C, Zhu G, He F, Du A, Wu M, Zhang H. Mater Chem Front, 2021, 5: 825–833

    Article  CAS  Google Scholar 

  18. Sham LJ, Schlüter M. Phys Rev Lett, 1983, 51: 1888–1891

    Article  Google Scholar 

  19. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  21. Chen X, Zhang X, Shi C, Li X, Qian Y A. Solid State Commun, 2005, 134: 613–615

    Article  CAS  Google Scholar 

  22. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB. ACS Appl Mater Interfaces, 2014, 6: 11173–11179

    Article  CAS  Google Scholar 

  23. Xia M, Chen B, Gu F, Zu L, Xu M, Feng Y, Wang Z, Zhang H, Zhang C, Yang J. ACS Nano, 2020, 14: 5111–5120

    Article  CAS  Google Scholar 

  24. Wen S, Zhao J, Zhao Y, Xu T, Xu J. Chem Phys Lett, 2019, 716: 171–176

    Article  CAS  Google Scholar 

  25. Wang S, Liu S, Li X, Li C, Zang R, Man Z, Wu Y, Li P, Wang G. Chem Eur J, 2018, 24: 3873–3881

    Article  CAS  Google Scholar 

  26. Bag S, Roy A, Mitra S. Chem Select, 2019, 4: 6679–6686

    CAS  Google Scholar 

  27. Ramalingam V, Varadhan P, Fu H, Kim H, Zhang D, Chen S, Song L, Ma D, Wang Y, Alshareef HN, He J. Adv Mater, 2019, 31: 1903841

    Article  CAS  Google Scholar 

  28. Shen L, Zhou X, Zhang X, Zhang Y, Liu Y, Wang W, Si W, Dong X. J Mater Chem A, 2018, 6: 23513–23520

    Article  CAS  Google Scholar 

  29. Jiang G, Zheng N, Chen X, Ding G, Li Y, Sun F, Li Y. Chem Eng J, 2019, 373: 1309–1318

    Article  CAS  Google Scholar 

  30. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Adv Funct Mater, 2017, 27: 1701264

    Article  Google Scholar 

  31. Dong Y, Hu M, Zhang Z, Zapien JA, Wang X, Lee JM, Zhang W. ACS Appl Nano Mater, 2019, 2: 1457–1465

    Article  CAS  Google Scholar 

  32. Bao W, Liu L, Wang C, Choi S, Wang D, Wang G. Adv Energy Mater, 2018, 8: 1702485

    Article  Google Scholar 

  33. Zhai H, Jiang H, Qian Y, Cai X, Liu H, Qiu Y, Jin M, Xiu F, Liu X, Lai L. Mater Chem Phys, 2020, 240: 122139

    Article  CAS  Google Scholar 

  34. Xie J, Liu L, Xia J, Zhang Y, Li M, Ouyang Y, Nie S, Wang X. Nano-Micro Lett, 2018, 10: 12

    Article  Google Scholar 

  35. Natu V, Clites M, Pomerantseva E, Barsoum MW. Mater Res Lett, 2018, 6: 230–235

    Article  CAS  Google Scholar 

  36. Choi JH, Ha CW, Choi HY, Shin HC, Park CM, Jo YN, Lee SM. Electrochim Acta, 2016, 210: 588–595

    Article  CAS  Google Scholar 

  37. Zhang Q, Chen H, Luo L, Zhao B, Luo H, Han X, Wang J, Wang C, Yang Y, Zhu T, Liu M. Energy Environ Sci, 2018, 11: 669–681

    Article  CAS  Google Scholar 

  38. Zheng Z, Wu HH, Liu H, Zhang Q, He X, Yu S, Petrova V, Feng J, Kostecki R, Liu P, Peng DL, Liu M, Wang MS. ACS Nano, 2020, 14: 9545–9561

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shuguang Program from Shanghai Education Development Foundation and Shanghai Municipal Education Commission (18SG035) and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (KF2015). Dr. Q. Zhang thanks the support by the National Natural Science Foundation of China (52072323, 51872098).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaobao Zhang or Haijiao Zhang.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Tang, C., Zhu, G. et al. Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage. Sci. China Chem. 64, 964–973 (2021). https://doi.org/10.1007/s11426-020-9942-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9942-9

Keywords

Navigation