Skip to main content

Suppressing trap states and energy loss by optimizing vertical phase distribution through ternary strategy in organic solar cells

Abstract

Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated. Favorable vertical phase distribution with donors (acceptors) accumulated (depleted) at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6. In addition, N2200 is gradiently distributed in the vertical direction in the ternary blend film. Various measurements were carried out to study the effects of N2200 on the binary systems. It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films, which is beneficial for the charge transport and collection. All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells (OSCs), and power conversion efficiencies (PCEs) of 12.5% and 16.42% were obtained for the ternary OSCs, respectively. This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Google Scholar 

  2. 2

    Sun H, Guo X, Facchetti A. Chem, 2020, 6: 1310–1326

    Google Scholar 

  3. 3

    Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Google Scholar 

  4. 4

    Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Google Scholar 

  5. 5

    Cui Y, Yao H, Hong L, Zhang T, Tang Y, Lin B, Xian K, Gao B, An C, Bi P, Ma W, Hou J. Natl Sci Rev, 2020, 7: 1239–1246

    Google Scholar 

  6. 6

    Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098

    Google Scholar 

  7. 7

    Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272–275

    Google Scholar 

  8. 8

    Vollbrecht J, Brus VV, Ko S, Lee J, Karki A, Cao DX, Cho K, Bazan GC, Nguyen T. Adv Energy Mater, 2019, 9: 1901438

    Google Scholar 

  9. 9

    Menke SM, Ran NA, Bazan GC, Friend RH. Joule, 2018, 2: 25–35

    Google Scholar 

  10. 10

    Hou T, Liu F, Wang Z, Zhang Y, Wei Q, Li B, Zhang S, Xing G. Adv Opt Mater, 2018, 6: 1800027

    Google Scholar 

  11. 11

    Kotadiya NB, Mondal A, Blom PWM, Andrienko D, Wetzelaer GJAH. Nat Mater, 2019, 18: 1182–1186

    Google Scholar 

  12. 12

    Yu R, Yao H, Cui Y, Hong L, He C, Hou J. Adv Mater, 2019, 31: 1902302

    Google Scholar 

  13. 13

    Rubel O, Baranovskii SD, Stolz W, Gebhard F. Phys Rev Lett, 2008, 100: 196602

    Google Scholar 

  14. 14

    He Y, Heumüller T, Lai W, Feng G, Classen A, Du X, Liu C, Li W, Li N, Brabec CJ. Adv Energy Mater, 2019, 9: 1900409

    Google Scholar 

  15. 15

    Song X, Gasparini N, Nahid MM, Chen H, Macphee SM, Zhang W, Norman V, Zhu C, Bryant D, Ade H, McCulloch I, Baran D. Adv Funct Mater, 2018, 28: 1802895

    Google Scholar 

  16. 16

    Zhou K, Liu Y, Alotaibi A, Yuan J, Jiang C, Xin J, Liu X, Collins BA, Zhang F, Ma W. ACS Energy Lett, 2020, 5: 589–596

    Google Scholar 

  17. 17

    Bi P, Xiao T, Yang X, Niu M, Wen Z, Zhang K, Qin W, So SK, Lu G, Hao X, Liu H. Nano Energy, 2018, 46: 81–90

    Google Scholar 

  18. 18

    Yan Y, Liu X, Wang T. Adv Mater, 2017, 29: 1601674

    Google Scholar 

  19. 19

    Wang G, Melkonyan FS, Facchetti A, Marks TJ. Angew Chem Int Ed, 2019, 58: 4129–4142

    Google Scholar 

  20. 20

    Li W, Ye L, Li S, Yao H, Ade H, Hou J. Adv Mater, 2018, 30: 1707170

    Google Scholar 

  21. 21

    Comyn J. Int J Adhes Adhes, 1992, 12: 145–149

    Google Scholar 

  22. 22

    Li W, Chen M, Cai J, Spooner ELK, Zhang H, Gurney RS, Liu D, Xiao Z, Lidzey DG, Ding L, Wang T. Joule, 2019, 3: 819–833

    Google Scholar 

  23. 23

    Du B, Geng R, Li W, Li D, Mao Y, Chen M, Zhang X, Smith JA, Kilbride RC, O’Kane ME, Liu D, Lidzey DG, Tang W, Wang T. ACS Energy Lett, 2019, 4: 2378–2385

    Google Scholar 

  24. 24

    Liao HC, Tsao CS, Lin TH, Chuang CM, Chen CY, Jeng US, Su CH, Chen YF, Su WF. J Am Chem Soc, 2011, 133: 13064–13073

    Google Scholar 

  25. 25

    Liang Q, Han J, Song C, Yu X, Smilgies DM, Zhao K, Liu J, Han Y. J Mater Chem A, 2018, 6: 15610–15620

    Google Scholar 

  26. 26

    An Q, Zhang J, Gao W, Qi F, Zhang M, Ma X, Yang C, Huo L, Zhang F. Small, 2018, 14: 1802983

    Google Scholar 

  27. 27

    Xie Y, Yang F, Li Y, Uddin MA, Bi P, Fan B, Cai Y, Hao X, Woo HY, Li W, Liu F, Sun Y. Adv Mater, 2018, 30: 1803045

    Google Scholar 

  28. 28

    Zuo G, Linares M, Upreti T, Kemerink M. Nat Mater, 2019, 18: 588–593

    Google Scholar 

  29. 29

    Eisner FD, Azzouzi M, Fei Z, Hou X, Anthopoulos TD, Dennis TJS, Heeney M, Nelson J. J Am Chem Soc, 2019, 141: 6362–6374

    Google Scholar 

  30. 30

    Vezie MS, Azzouzi M, Telford AM, Hopper TR, Sieval AB, Hummelen JC, Fallon K, Bronstein H, Kirchartz T, Bakulin AA, Clarke TM, Nelson J. ACS Energy Lett, 2019, 4: 2096–2103

    Google Scholar 

  31. 31

    Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515

    Google Scholar 

  32. 32

    Li G, Chu CW, Shrotriya V, Huang J, Yang Y. Appl Phys Lett, 2006, 88: 253503

    Google Scholar 

  33. 33

    Xu Z, Chen LM, Yang G, Huang CH, Hou J, Wu Y, Li G, Hsu CS, Yang Y. Adv Funct Mater, 2009, 19: 1227–1234

    Google Scholar 

  34. 34

    Li D, Chen X, Cai J, Li W, Chen M, Mao Y, Du B, Smith JA, Kilbride RC, O’Kane ME, Zhang X, Zhuang Y, Wang P, Wang H, Liu D, Jones RAL, Lidzey DG, Wang T. Sci China Chem, 2020, 63: 1461–1468

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21835006, 21704004), the Fundamental Research Funds for the Central Universities, China (FRF-TP-19-047A2), and China Postdoctoral Science Foundation (2019M660799).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shaoqing Zhang, Xiaotao Hao or Jianhui Hou.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting information

11426_2020_9926_MOESM1_ESM.docx

Suppressing Trap States and Energy Loss by Optimizing Vertical Phase Distribution through Ternary Strategy in Organic Solar Cells

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bi, P., Zhang, S., Xiao, T. et al. Suppressing trap states and energy loss by optimizing vertical phase distribution through ternary strategy in organic solar cells. Sci. China Chem. 64, 599–607 (2021). https://doi.org/10.1007/s11426-020-9926-x

Download citation

Keywords

  • non-fullerene organic solar cells
  • ternary strategy
  • vertical phase distribution
  • trap state density
  • energy loss