Skip to main content
Log in

Dispen-Seq: a single-microparticle dispenser based strategy towards flexible cell barcoding for single-cell RNA sequencing

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Single-cell RNA sequencing (scRNA-seq) has become one of the most powerful tools to understand the heterogeneity of biological systems. While barcoding strategies have revolutionized the field of high-throughput scRNA-seq, it is still challenging to achieve highly efficient, direct and universal cell barcoding with cost-effectiveness and minimal sample loss. Herein, a single micro-particle dispenser approach for rapid single barcode bead/cell manipulation and pairing, enabling highly efficient cell barcoding for scRNA-seq (Dispen-Seq) was developed. Notably, Dispen-Seq provides a versatile platform which can enrich cell subgroups of interest while unlimited by input sample amounts, and can respond to changes in sample composition with high resolution and reproducibility. It is anticipated that Dispen-Seq will increase the scope of scRNA-seq from academic research to practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu Y, Xue Q, Eisele MR, Sulistijo ES, Brower K, Han L, Amir ED, Peer D, Millerjensen K, Fan R. Proc Natl Acad Sci USA, 2015, 112: 201416756

    Google Scholar 

  2. Xu S, Ma W, Bai Y, Liu H. J Am Chem Soc, 2019, 141: 72–75

    Google Scholar 

  3. Fu Y, Chen H, Liu L, Huang Y. Anal Chem, 2016, 88: 10795–10799

    Google Scholar 

  4. Labib M, Mohamadi RM, Poudineh M, Ahmed SU, Ivanov I, Huang CL, Moosavi M, Sargent EH, Kelley SO. Nat Chem, 2018, 10: 489–495

    Google Scholar 

  5. Comi TJ, Do TD, Rubakhin SS, Sweedler JV. J Am Chem Soc, 2017, 139: 3920–3929

    Google Scholar 

  6. Krone KM, Warias R, Ritter C, Li A, Acevedo-Rocha CG, Reetz MT, Belder D. J Am Chem Soc, 2016, 138: 2102–2105

    Google Scholar 

  7. Xue M, Wei W, Su Y, Johnson D, Heath JR. J Am Chem Soc, 2016, 138: 3085–3093

    Google Scholar 

  8. Zhang Y, Wu M, Han X, Wang P, Qin L. Angew Chem Int Ed, 2015, 54: 10838–10842

    Google Scholar 

  9. Li J, Xun K, Pei K, Liu X, Peng X, Du Y, Qiu L, Tan W. J Am Chem Soc, 2019, 141: 18013–18020

    Google Scholar 

  10. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Cell, 2015, 161: 1187–1201

    Google Scholar 

  11. Zhang P, Han X, Yao J, Shao N, Zhang K, Zhou Y, Zu Y, Wang B, Qin L. Angew Chem Int Ed, 2019, 58: 13700–13705

    Google Scholar 

  12. Chattopadhyay PK, Chiu DT. Lab Chip, 2019, 19: 3573–3574

    Google Scholar 

  13. van Galen P, Hovestadt V, Wadsworth II MH, Hughes TK, Griffin GK, Battaglia S, Verga JA, Stephansky J, Pastika TJ, Lombardi Story J, Pinkus GS, Pozdnyakova O, Galinsky I, Stone RM, Graubert TA, Shalek AK, Aster JC, Lane AA, Bernstein BE. Cell, 2019, 176: 1265–1281.e24

    Google Scholar 

  14. Yun J, Zheng X, Xu P, Zheng X, Xu J, Cao C, Fu Y, Xu B, Dai X, Wang Y, Liu H, Yi Q, Zhu Y, Wang J, Wang L, Dong Z, Huang L, Huang Y, Du W. Small, 2020, 16: 1903739

    Google Scholar 

  15. Xu X, Wang J, Wu L, Guo J, Song Y, Tian T, Wang W, Zhu Z, Yang C. Small, 2020, 16: 1903905

    Google Scholar 

  16. Hanson WM, Chen Z, Jackson LK, Attaf M, Sewell AK, Heemstra JM, Phillips JD. J Am Chem Soc, 2016, 138: 11073–11076

    Google Scholar 

  17. Wu AR, Wang J, Streets AM, Huang Y. Annu Rev Anal Chem, 2017, 10: 439–462

    Google Scholar 

  18. Song Y, Xu X, Wang W, Tian T, Zhu Z, Yang C. Analyst, 2019, 144: 3172–3189

    Google Scholar 

  19. Rakszewska A, Stolper RJ, Kolasa AB, Piruska A, Huck WTS. Angew Chem Int Ed, 2016, 55: 6698–6701

    Google Scholar 

  20. Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, Graybuck LT, Peeler DJ, Mukherjee S, Chen W, Pun SH, Sellers DL, Tasic B, Seelig G. Science, 2018, 360: 176–182

    Google Scholar 

  21. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, Amit I. Science, 2014, 343: 776–779

    Google Scholar 

  22. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, Steemers FJ, Trapnell C, Shendure J. Nature, 2019, 566: 496–502

    Google Scholar 

  23. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA. Cell, 2015, 161: 1202–1214

    Google Scholar 

  24. Gierahn TM, Wadsworth Ii MH, Hughes TK, Bryson BD, Butler A, Satija R, Fortune S, Love JC, Shalek AK. Nat Methods, 2017, 14: 395–398

    Google Scholar 

  25. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. Nat Commun, 2017, 8: 14049

    Google Scholar 

  26. Fan HC, Fu GK, Fodor SPA. Science, 2015, 347: 1258367

    Google Scholar 

  27. Dura B, Choi JY, Zhang K, Damsky W, Thakral D, Bosenberg M, Craft J, Fan R. Nucl Acids Res, 2018, 47: e16

    Google Scholar 

  28. Rouhanifard SH, Mellis IA, Dunagin M, Bayatpour S, Jiang CL, Dardani I, Symmons O, Emert B, Torre E, Cote A, Sullivan A, Stamatoyannopoulos JA, Raj A. Nat Biotechnol, 2019, 37: 84–89

    Google Scholar 

  29. Keren-Shaul H, Kenigsberg E, Jaitin DA, David E, Paul F, Tanay A, Amit I. Nat Protoc, 2019, 14: 1841–1862

    Google Scholar 

  30. Papalexi E, Satija R. Nat Rev Immunol, 2017, 18: 35–45

    Google Scholar 

  31. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Botstein D. Mol Biol Cell, 2002, 13: 1977–2000

    Google Scholar 

  32. Zhang K, Gao M, Chong Z, Li Y, Han X, Chen R, Qin L. Lab Chip, 2016, 16: 4742–4748

    Google Scholar 

  33. Zhang K, Han X, Li Y, Li SY, Zu Y, Wang Z, Qin L. J Am Chem Soc, 2014, 136: 10858–10861

    Google Scholar 

  34. Lawrenz A, Nason F, Cooper-White JJ. Biomicrofluidics, 2012, 6: 024112

    Google Scholar 

  35. Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, Daza RM, McFaline-Figueroa JL, Packer JS, Christiansen L, Steemers FJ, Adey AC, Trapnell C, Shendure J. Science, 2018, 361: 1380–1385

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFC1602900), the National Natural Science Foundation of China (21927806, 21735004, 222022409, 21874089, 21705024, 21775128) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT13036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanling Song or Chaoyong Yang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2020_9925_MOESM1_ESM.docx

Dispen-Seq: A Single-Microparticle Dispenser Based Strategy Towards Flexible Cell Barcoding for Single-Cell RNA Sequencing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, T., Chen, Y., Bi, Y. et al. Dispen-Seq: a single-microparticle dispenser based strategy towards flexible cell barcoding for single-cell RNA sequencing. Sci. China Chem. 64, 650–659 (2021). https://doi.org/10.1007/s11426-020-9925-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9925-8

Keywords

Navigation