Skip to main content
Log in

Radical induced quartet photosensitizers with high 1O2 production for in vivo cancer photodynamic therapy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Singlet oxygen (1O2) is a strong oxidant which plays important roles in photodynamic therapy (PDT). The exploitation of photosensitizers with high 1O2 production is crucial to improve PDT efficiency. In this study, a radical labeled quartet photosensitizer Cy-DENT is reported with high singlet oxygen quantum yield (ΦΔ=32.3%) due to a radical enhanced inter-system crossing (ISC) process. After the introduction of 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) radical, quartet state 4[R,T] of Cy-DENT could be formed to give an over 20-fold enhancement of singlet oxygen quantum yield compared to Cy-DEN (without TEMPO radical) under irradiation of near infrared (NIR) light. In addition, the 1O2 production is well controlled by varying the electron-donating ability of the terminal substituent group. Cy-DENT possesses good cell permeability and is localized in mitochondria. Under the irradiation of 700 nm light, Cy-DENT can produce high levels of ROS to destroy the mitochondria membrane potential and induce cell apoptosis. Through the encapsulation of PEG-SS-PCL micelle, Cy-DENT can be effectively delivered to tumors and suppresses the tumor growth after PDT treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lan M, Zhao S, Liu W, Lee C, Zhang W, Wang P. Adv Healthc Mater, 2019, 8: 1900132

    Article  Google Scholar 

  2. Triesscheijn M, Baas P, Schellens JHM, Stewart FA. Oncologist, 2006, 11: 1034–1044

    Article  CAS  PubMed  Google Scholar 

  3. Li M, Luo Z, Zhao Y. Sci China Chem, 2018, 61: 1214–1226

    Article  CAS  Google Scholar 

  4. Dolmans DEJGJ, Fukumura D, Jain RK. Nat Rev Cancer, 2003, 3: 380–387

    Article  CAS  PubMed  Google Scholar 

  5. Li M, Xiong T, Du J, Tian R, Xiao M, Guo L, Long S, Fan J, Sun W, Shao K, Song X, Foley JW, Peng X. J Am Chem Soc, 2019, 141: 2695–2702

    Article  CAS  PubMed  Google Scholar 

  6. Huang L, Li Z, Zhao Y, Zhang Y, Wu S, Zhao J, Han G. J Am Chem Soc, 2016, 138: 14586–14591

    Article  CAS  PubMed  Google Scholar 

  7. Pu K. Sci China Chem, 2018, 61: 1353–1354

    Article  CAS  Google Scholar 

  8. Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T. Chem Rev, 2010, 110: 2795–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Foote CS. Photochem Photobiol, 1991, 54: 659

    Article  CAS  PubMed  Google Scholar 

  10. Jiang X, Zhu N, Zhao D, Ma Y. Sci China Chem, 2015, 59: 40–52

    Article  Google Scholar 

  11. Atchison J, Kamila S, Nesbitt H, Logan KA, Nicholas DM, Fowley C, Davis J, Callan B, McHale AP, Callan JF. Chem Commun, 2017, 53: 2009–2012

    Article  CAS  Google Scholar 

  12. Xu F, Li H, Yao Q, Ge H, Fan J, Sun W, Wang J, Peng X. Chem Sci, 2019, 10: 10586–10594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. James N, Cheruku R, Missert J, Sunar U, Pandey R. Molecules, 2018, 23: 1842–1854

    Article  PubMed Central  Google Scholar 

  14. Cardillo JA, Jorge R, Costa RA, Nunes SMT, Lavinsky D, Kuppermann BD, Tedesco AC, Farah ME. Br J Ophthalmol, 2008, 92: 276–280

    Article  CAS  PubMed  Google Scholar 

  15. Patterson LK, Porter G, Topp MR. Chem Phys Lett, 1970, 7: 612–614

    Article  CAS  Google Scholar 

  16. Zhao J, Xu K, Yang W, Wang Z, Zhong F. Chem Soc Rev, 2015, 44: 8904–8939

    Article  CAS  PubMed  Google Scholar 

  17. Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K. Chem Soc Rev, 2013, 42: 77–88

    Article  CAS  PubMed  Google Scholar 

  18. Tian R, Sun W, Li M, Long S, Li M, Fan J, Guo L, Peng X. Chem Sci, 2019, 10: 10106–10112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou X, Li H, Shi C, Xu F, Zhang Z, Yao Q, Ma H, Sun W, Shao K, Du J, Long S, Fan J, Wang J, Peng X. Biomaterials, 2020, 253: 120089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ciubini B, Visentin S, Serpe L, Canaparo R, Fin A, Barbero N. Dyes Pigments, 2019, 160: 806–813

    Article  CAS  Google Scholar 

  21. Lim SH, Thivierge C, Nowak-Sliwinska P, Han J, van den Bergh H, Wagnieres G, Burgess K, Lee HB. J Med Chem, 2010, 53: 2865–2874

    Article  CAS  PubMed  Google Scholar 

  22. Xu S, Yuan Y, Cai X, Zhang CJ, Hu F, Liang J, Zhang G, Zhang D, Liu B. Chem Sci, 2015, 6: 5824–5830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang L, Wang X, Zhang G, Chen X, Zhang G, Jiang J. Nanoscale, 2016, 8: 17422–17426

    Article  CAS  PubMed  Google Scholar 

  24. Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, Zhao Y, Yin M. Angew Chem Int Ed, 2018, 57: 11384–11388

    Article  CAS  Google Scholar 

  25. Kawai A, Obi K. J Phys Chem, 1992, 96: 52–56

    Article  CAS  Google Scholar 

  26. Teki Y, Miyamoto S, Nakatsuji M, Miura Y. J Am Chem Soc, 2001, 123: 294–305

    Article  CAS  PubMed  Google Scholar 

  27. Conti F, Corvaja C, Busolo F, Zordan G, Maggini M, Weber S. Phys Chem Chem Phys, 2009, 11: 495–502

    Article  CAS  PubMed  Google Scholar 

  28. Kawai A, Shibuya K. J Photochem Photobiol C, 2006, 7: 89–103

    Article  CAS  Google Scholar 

  29. Ishii K, Hirose Y, Kobayashi N. J Phys Chem A, 1999, 103: 1986–1990

    Article  CAS  Google Scholar 

  30. Colvin MT, Giacobbe EM, Cohen B, Miura T, Scott AM, Wasielewski MR. J Phys Chem A, 2010, 114: 1741–1748

    Article  CAS  PubMed  Google Scholar 

  31. Dyar SM, Margulies EA, Horwitz NE, Brown KE, Krzyaniak MD, Wasielewski MR. J Phys Chem B, 2015, 119: 13560–13569

    Article  CAS  PubMed  Google Scholar 

  32. Likhtenstein GI, Ishii K, Nakatsuji S’. Photochem Photobiol, 2007, 83: 871–881

    Article  CAS  PubMed  Google Scholar 

  33. Ishii K, Hirose Y, Fujitsuka M, Ito O, Kobayashi N. J Am Chem Soc, 2001, 123: 3403

    Article  CAS  Google Scholar 

  34. Li P, Xie T, Duan X, Yu F, Wang X, Tang B. Chem Eur J, 2010, 16: 1834–1840

    Article  CAS  PubMed  Google Scholar 

  35. Yapici NB, Jockusch S, Moscatelli A, Mandalapu SR, Itagaki Y, Bates DK, Wiseman S, Gibson KM, Turro NJ, Bi L. Org Lett, 2012, 14: 50–53

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z, Zhao J, Barbon A, Toffoletti A, Liu Y, An Y, Xu L, Karatay A, Yaglioglu HG, Yildiz EA, Hayvali M. J Am Chem Soc, 2017, 139: 7831–7842

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z, Gao Y, Hussain M, Kundu S, Rane V, Hayvali M, Yildiz EA, Zhao J, Yaglioglu HG, Das R, Luo L, Li J. Chem Eur J, 2018, 24: 18663–18675

    Article  CAS  PubMed  Google Scholar 

  38. Jiao L, Song F, Cui J, Peng X. Chem Commun, 2018, 54: 9198–9201

    Article  CAS  Google Scholar 

  39. Zheng J, Liu Y, Song F, Jiao L, Wu Y, Peng X. Chem Commun, 2020, 56: 5819–5822

    Article  CAS  Google Scholar 

  40. Sun H, Guo B, Cheng R, Meng F, Liu H, Zhong Z. Biomaterials, 2009, 30: 6358–6366

    Article  CAS  PubMed  Google Scholar 

  41. Xu X, Jia L, Shi L, Cui Z. Spectr Lett, 2010, 43: 310–316

    Article  CAS  Google Scholar 

  42. Kawai A, Obi K. Res Chem Intermed, 1993, 19: 865–894

    Article  CAS  Google Scholar 

  43. Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C. Nat Photon, 2014, 8: 326–332

    Article  CAS  Google Scholar 

  44. Qi S, Kwon N, Yim Y, Nguyen VN, Yoon J. Chem Sci, 2020, 11: 6479–6484

    Article  CAS  Google Scholar 

  45. Roopa R, Kumar N, Bhalla V, Kumar M. Chem Commun, 2015, 51: 15614–15628

    Article  CAS  Google Scholar 

  46. Xu Z, Xu L. Chem Commun, 2016, 52: 1094–1119

    Article  CAS  Google Scholar 

  47. Kessel D, Luo Y. Cell Death Differ, 1999, 6: 28–35

    Article  CAS  PubMed  Google Scholar 

  48. Granville DJ, Carthy CM, Jiang H, Shore GC, McManus BM, Hunt DWC. FEBS Lett, 1998, 437: 5–10

    Article  CAS  PubMed  Google Scholar 

  49. Jiang N, Fan J, Liu T, Cao J, Qiao B, Wang J, Gao P, Peng X. Chem Commun, 2013, 49: 10620–10622

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21421005, 21576037, U1608222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Peng.

Additional information

Conflict of interest

The authors declare conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Ge, H., Xu, N. et al. Radical induced quartet photosensitizers with high 1O2 production for in vivo cancer photodynamic therapy. Sci. China Chem. 64, 488–498 (2021). https://doi.org/10.1007/s11426-020-9922-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9922-3

Navigation