Skip to main content
Log in

Improving current and mitigating energy loss in ternary organic photovoltaics enabled by two well-compatible small molecule acceptors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ternary organic photovoltaic (OPV) strategy is an effective but facile approach to enhance the photovoltaic performance for single-junction devices. Herein, a series of ternary OPVs were fabricated by employing a wide bandgap donor (PBDB-TF) and two acceptor-donor-acceptor (A-D-A)-type nonfullerene small molecule acceptors (NF-SMAs, called F-2Cl and 3TT-OCIC). As the third component, the near-infrared SMA, 3TT-OCIC, has complementary absorption spectrum, narrow bandgap and well-compatible crystallization property to the host acceptor (F-2Cl) for efficient ternary OPVs. With these, the optimal ternary devices yield significantly enhanced power conversion efficiency of 15.23%, one of the very few examples with PCE higher than 15% other than Y6 systems. This is mainly attributed to the increased short-circuit current density of 24.92 mA cm−2 and dramatically decreased energy loss of 0.53 eV. This work presents a successful example for simultaneously improving current, minimizing energy loss and together with modifying the morphology of active layers in OPVs, which will contribute to the further construction of high performance ternary OPVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qian D, Zheng Z, Yao H, Tress W, Hopper TR, Chen S, Li S, Liu J, Chen S, Zhang J, Liu XK, Gao B, Ouyang L, Jin Y, Pozina G, Buyanova IA, Chen WM, Inganäs O, Coropceanu V, Bredas JL, Yan H, Hou J, Zhang F, Bakulin AA, Gao F. Nat Mater, 2018, 17: 703–709

    Article  Google Scholar 

  2. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003

    Article  Google Scholar 

  3. Zhang J, Tan HS, Guo X, Facchetti A, Yan H. Nat Energy, 2018, 3: 720–731

    Article  Google Scholar 

  4. Sun Y, Chang M, Meng L, Wan X, Gao H, Zhang Y, Zhao K, Sun Z, Li C, Liu S, Wang H, Liang J, Chen Y. Nat Electron, 2019, 2: 513–520

    Article  Google Scholar 

  5. Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515

    Article  Google Scholar 

  6. Kan B, Feng H, Yao H, Chang M, Wan X, Li C, Hou J, Chen Y. Sci China Chem, 2018, 61: 1307–1313

    Article  Google Scholar 

  7. Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y. Nat Photonics, 2020, 14: 300–305

    Article  Google Scholar 

  8. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098

    Article  Google Scholar 

  9. Wan X, Li C, Zhang M, Chen Y. Chem Soc Rev, 2020, 49: 2828–2842

    Article  Google Scholar 

  10. Fei H. Acta Polym Sin, 2018, 9: 1141–1143

    Google Scholar 

  11. Nian L, Kan Y, Gao K, Zhang M, Li N, Zhou G, Jo SB, Shi X, Lin F, Rong Q, Liu F, Zhou G, Jen AKY. Joule, 2020, doi: https://doi.org/10.1016/j.joule.2020.1008.1011

  12. Zhang Y, Feng H, Meng L, Wang Y, Chang M, Li S, Guo Z, Li C, Zheng N, Xie Z, Wan X, Chen Y. Adv Energy Mater, 2019, 9: 1902688

    Article  Google Scholar 

  13. Sun Y, Gao HH, Yi YQQ, Wan X, Feng H, Ke X, Zhang Y, Yan J, Li C, Chen Y. Sci China Mater, 2019, 62: 1210–1217

    Article  Google Scholar 

  14. Liu T, Luo Z, Chen Y, Yang T, Xiao Y, Zhang G, Ma R, Lu X, Zhan C, Zhang M, Yang C, Li Y, Yao J, Yan H. Energy Environ Sci, 2019, 12: 2529–2536

    Article  Google Scholar 

  15. Ma X, Wang J, Gao J, Hu Z, Xu C, Zhang X, Zhang F. Adv Energy Mater, 2020, 10: 2001404

    Article  Google Scholar 

  16. Zhan L, Li S, Zhang H, Gao F, Lau TK, Lu X, Sun D, Wang P, Shi M, Li CZ, Chen H. Adv Sci, 2018, 5: 1800755

    Article  Google Scholar 

  17. Zhou Z, Xu S, Song J, Jin Y, Yue Q, Qian Y, Liu F, Zhang F, Zhu X. Nat Energy, 2018, 3: 952–959

    Article  Google Scholar 

  18. Gao HH, Sun Y, Wan X, Ke X, Feng H, Kan B, Wang Y, Zhang Y, Li C, Chen Y. Adv Sci, 2018, 5: 1800307

    Article  Google Scholar 

  19. Kan B, Yi YQQ, Wan X, Feng H, Ke X, Wang Y, Li C, Chen Y. Adv Energy Mater, 2018, 8: 1800424

    Article  Google Scholar 

  20. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205

    Article  Google Scholar 

  21. Lin Y, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X, Yarali E, Seitkhan A, Bakr OM, El-Labban A, Schwingenschlögl U, Tung V, McCulloch I, Laquai F, Anthopoulos TD. Adv Mater, 2019, 31: 1902965

    Article  Google Scholar 

  22. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272–275

    Article  Google Scholar 

  23. Yao J, Qiu B, Zhang ZG, Xue L, Wang R, Zhang C, Chen S, Zhou Q, Sun C, Yang C, Xiao M, Meng L, Li Y. Nat Commun, 2020, 11: 2726

    Article  Google Scholar 

  24. Yu R, Yao H, Cui Y, Hong L, He C, Hou J. Adv Mater, 2019, 31: 1902302

    Article  Google Scholar 

  25. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  Google Scholar 

  26. Zhan L, Li S, Lau TK, Cui Y, Lu X, Shi M, Li CZ, Li H, Hou J, Chen H. Energy Environ Sci, 2020, 13: 635–645

    Article  Google Scholar 

  27. Luo Z, Ma R, Liu T, Yu J, Xiao Y, Sun R, Xie G, Yuan J, Chen Y, Chen K, Chai G, Sun H, Min J, Zhang J, Zou Y, Yang C, Lu X, Gao F, Yan H. Joule, 2020, 4: 1236–1247

    Article  Google Scholar 

  28. Kumari T, Lee SM, Kang SH, Chen S, Yang C. Energy Environ Sci, 2017, 10: 258–265

    Article  Google Scholar 

  29. Zhang J, Zhang Y, Fang J, Lu K, Wang Z, Ma W, Wei Z. J Am Chem Soc, 2015, 137: 8176–8183

    Article  Google Scholar 

  30. Baran D, Kirchartz T, Wheeler S, Dimitrov S, Abdelsamie M, Gorman J, Ashraf RS, Holliday S, Wadsworth A, Gasparini N, Kaienburg P, Yan H, Amassian A, Brabec CJ, Durrant JR, McCulloch I. Energy Environ Sci, 2016, 9: 3783–3793

    Article  Google Scholar 

  31. Janssen RAJ, Nelson J. Adv Mater, 2013, 25: 1847–1858

    Article  Google Scholar 

  32. Kranthiraja K, Kim S, Lee C, Gunasekar K, Sree VG, Gautam B, Gundogdu K, Jin SH, Kim BJ. Adv Funct Mater, 2017, 27: 1701256

    Article  Google Scholar 

  33. Li Y, Lee DH, Lee J, Nguyen TL, Hwang S, Park MJ, Choi DH, Woo HY. Adv Funct Mater, 2017, 27: 1701942

    Article  Google Scholar 

  34. Nguyen TL, Lee C, Kim H, Kim Y, Lee W, Oh JH, Kim BJ, Woo HY. Macromolecules, 2017, 50: 4415–4424

    Article  Google Scholar 

  35. Wang C, Zhang W, Meng X, Bergqvist J, Liu X, Genene Z, Xu X, Yartsev A, Inganäs O, Ma W, Wang E, Fahlman M. Adv Energy Mater, 2017, 7: 1700390

    Article  Google Scholar 

  36. Vandewal K, Benduhn J, Nikolis VC. Sustain Energy Fuels, 2018, 2: 538–544

    Article  Google Scholar 

  37. Fu H, Wang Y, Meng D, Ma Z, Li Y, Gao F, Wang Z, Sun Y. ACS Energy Lett, 2018, 3: 2729–2735

    Article  Google Scholar 

  38. Rosenthal KD, Hughes MP, Luginbuhl BR, Ran NA, Karki A, Ko S-J, Hu H, Wang M, Ade H, Nguyen T-Q. Adv Energy Mater, 2019, 9: 1901077

    Article  Google Scholar 

  39. Zhong Y, Causa’ M, Moore GJ, Krauspe P, Xiao B, Günther F, Kublitski J, Shivhare R, Benduhn J, BarOr E, Mukherjee S, Yallum KM, Réhault J, Mannsfeld SCB, Neher D, Richter LJ, DeLongchamp DM, Ortmann F, Vandewal K, Zhou E, Banerji N. Nat Commun, 2020, 11: 833

    Article  Google Scholar 

  40. Ma X, An Q, Ibraikulov OA, Lévêque P, Heiser T, Leclerc N, Zhang X, Zhang F. J Mater Chem A, 2020, 8: 1265–1272

    Article  Google Scholar 

  41. Yu R, Zhang S, Yao H, Guo B, Li S, Zhang H, Zhang M, Hou J. Adv Mater, 2017, 29: 1700437

    Article  Google Scholar 

  42. An Q, Zhang F, Zhang J, Tang W, Deng Z, Hu B. Energy Environ Sci, 2016, 9: 281–322

    Article  Google Scholar 

  43. Huang JS, Goh T, Li X, Sfeir MY, Bielinski EA, Tomasulo S, Lee ML, Hazari N, Taylor AD. Nat Photon, 2013, 7: 479–485

    Article  Google Scholar 

  44. Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J, Ma W, Yan H, Huang F, Cao Y. J Am Chem Soc, 2017, 139: 2387–2395

    Article  Google Scholar 

  45. Zhang ZG, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J. Energy Environ Sci, 2014, 7: 1966–1973

    Article  Google Scholar 

  46. Baumann A, Lorrmann J, Rauh D, Deibel C, Dyakonov V. Adv Mater, 2012, 24: 4381–4386

    Article  Google Scholar 

  47. Maurano A, Hamilton R, Shuttle CG, Ballantyne AM, Nelson J, O’Regan B, Zhang W, McCulloch I, Azimi H, Morana M, Brabec CJ, Durrant JR. Adv Mater, 2010, 22: 4987–4992

    Article  Google Scholar 

  48. Shuttle CG, O’Regan B, Ballantyne AM, Nelson J, Bradley DDC, Durrant JR. Phys Rev B, 2008, 78: 113201

    Article  Google Scholar 

  49. Huang Y, Kramer EJ, Heeger AJ, Bazan GC. Chem Rev, 2014, 114: 7006–7043

    Article  Google Scholar 

  50. Xia T, Cai Y, Fu H, Sun Y. Sci China Chem, 2019, 62: 662–668

    Article  Google Scholar 

  51. Gao H-, Sun Y, Cai Y, Wan X, Meng L, Ke X, Li S, Zhang Y, Xia R, Zheng N, Xie Z, Li C, Zhang M, Yip H-L, Cao Y, Chen Y. Adv Energy Mater, 2019, 9: 1901024

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFA0705900, 2016YFA0200200), the National Natural Science Foundation of China (21935007, 51873089, 51773095), Tianjin city (20JCZDJC00740, 17JCJQJC44500) and 111 Project (B12015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2020_9921_MOESM1_ESM.pdf

Improving Current and Mitigating Energy Loss in Ternary Organic Photovoltaics Enabled by Two Well-Compatible Small Molecule Acceptors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Gao, HH., Wu, S. et al. Improving current and mitigating energy loss in ternary organic photovoltaics enabled by two well-compatible small molecule acceptors. Sci. China Chem. 64, 608–615 (2021). https://doi.org/10.1007/s11426-020-9921-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9921-4

Keywords

Navigation