Skip to main content
Log in

A quadruple helicene with a rubicene core: synthesis, structural analyses and properties

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We report the synthesis of a quadruple helicene with a rubicene core R1 by a Scholl reaction. Among the 10 stereoisomers including 4 pairs of enantiomers and 2 meso isomers, only 2 pairs of enantiomers and 1 meso isomer have been isolated. The sample structures were unambiguously determined by X-ray crystallography to be (P,P)6-(P,P)5/(M,M)6-(M,M)5-R1-A, which has a propeller-shaped structure, and (M,M)6-(P,P)5/(P,P)6-(M,M)5-R1-B and (M,P)6-(P,M)5-R1-C, which have saddle-shaped structures. The chiral resolutions of R1 were carried out by chiral HPLC, revealing two pairs of chiral stereoisomers (P,P)6-(P,P)5/(P,P)6-(M,M)5, (M,M)6-(P,P)5/(M,M)6-(M,M)5 as well as a meso isomer (M,P)6-(P,M)5, which were further characterized by CD spectroscopy and time-dependent density functional theory (TD-DFT) calculations. Surprisingly, the UV-vis absorption and emission spectra of these resolved stereoisomers and unresolved R1 were almost identical. In addition, the chemical oxidation of R1 led to the formation of radical cations and dications at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen Y, Chen CF. Chem Rev, 2012, 112: 1463–1535

    Article  Google Scholar 

  2. Gingras M. Chem Soc Rev, 2013, 42: 968–1006

    Article  Google Scholar 

  3. Gingras M, Félix G, Peresutti R. Chem Soc Rev, 2013, 42: 1007–1050

    Article  Google Scholar 

  4. Gingras M. Chem Soc Rev, 2013, 42: 1051–1095

    Article  Google Scholar 

  5. Nishino K, Hashimoto K, Tanaka K, Morisaki Y, Chujo Y. Sci China Chem, 2018, 61: 940–946

    Article  Google Scholar 

  6. Wang XY, Yao X, Müllen K. Sci China Chem, 2019, 62: 1099–1144

    Article  Google Scholar 

  7. Ball M, Zhong Y, Wu Y, Schenck C, Ng F, Steigerwald M, Xiao S, Nuckolls C. Acc Chem Res, 2015, 48: 267–276

    Article  Google Scholar 

  8. Rickhaus M, Mayor M, Juríček M. Chem Soc Rev, 2016, 45: 1542–1556

    Article  Google Scholar 

  9. Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Chem Rev, 2016, 116: 13752–13990

    Article  Google Scholar 

  10. Fujikawa T, Mitoma N, Wakamiya A, Saeki A, Segawa Y, Itami K. Org Biomol Chem, 2017, 15: 4697–4703

    Article  Google Scholar 

  11. Li C, Yang Y, Miao Q. Chem Asian J, 2018, 13: 884–894

    Article  Google Scholar 

  12. Zhylitskaya H, Stępień M. Org Chem Front, 2018, 5: 2395–2414

    Article  Google Scholar 

  13. Fernández-García JM, Evans PJ, Filippone S, Herranz MÁ, Martín N. Acc Chem Res, 2019, 52: 1565–1574

    Article  Google Scholar 

  14. Wang XY, Narita A, Zhang W, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 9021–9024

    Article  Google Scholar 

  15. Meng D, Fu H, Xiao C, Meng X, Winands T, Ma W, Wei W, Fan B, Huo L, Doltsinis NL, Li Y, Sun Y, Wang Z. J Am Chem Soc, 2016, 138: 10184–10190

    Article  Google Scholar 

  16. Chen Y, Marszalek T, Fritz T, Baumgarten M, Wagner M, Pisula W, Chen L, Müllen K. Chem Commun, 2017, 53: 8474–8477

    Article  Google Scholar 

  17. Berezhnaia V, Roy M, Vanthuyne N, Villa M, Naubron JV, Rodriguez J, Coquerel Y, Gingras M. J Am Chem Soc, 2017, 139: 18508–18511

    Article  Google Scholar 

  18. Hosokawa T, Takahashi Y, Matsushima T, Watanabe S, Kikkawa S, Azumaya I, Tsurusaki A, Kamikawa K. J Am Chem Soc, 2017, 139: 18512–18521

    Article  Google Scholar 

  19. Zhu Y, Xia Z, Cai Z, Yuan Z, Jiang N, Li T, Wang Y, Guo X, Li Z, Ma S, Zhong D, Li Y, Wang J. J Am Chem Soc, 2018, 140: 4222–4226

    Article  Google Scholar 

  20. Meng D, Liu G, Xiao C, Shi Y, Zhang L, Jiang L, Baldridge KK, Li Y, Siegel JS, Wang Z. J Am Chem Soc, 2019, 141: 5402–5408

    Article  Google Scholar 

  21. Zhu Y, Guo X, Li Y, Wang J. J Am Chem Soc, 2019, 141: 5511–5517

    Article  Google Scholar 

  22. Wang L, Han Y, Zhang J, Li X, Liu X, Xiao J. Org Lett, 2020, 22: 261–264

    Article  Google Scholar 

  23. Ma Z, Winands T, Liang N, Meng D, Jiang W, Doltsinis NL, Wang Z. Sci China Chem, 2020, 63: 208–214

    Article  Google Scholar 

  24. Żyła-Karwowska M, Zhylitskaya H, Cybińska J, Lis T, Chmielewski PJ, Stępień M. Angew Chem Int Ed, 2016, 55: 14658–14662

    Article  Google Scholar 

  25. Fujikawa T, Segawa Y, Itami K. J Am Chem Soc, 2016, 138: 3587–3595

    Article  Google Scholar 

  26. Hu Y, Wang XY, Peng PX, Wang XC, Cao XY, Feng X, Müllen K, Narita A. Angew Chem Int Ed, 2017, 56: 3374–3378

    Article  Google Scholar 

  27. Saito H, Uchida A, Watanabe S. J Org Chem, 2017, 82: 5663–5668

    Article  Google Scholar 

  28. Kato K, Segawa Y, Scott LT, Itami K. Angew Chem Int Ed, 2018, 57: 1337–1341

    Article  Google Scholar 

  29. Liu G, Koch T, Li Y, Doltsinis NL, Wang Z. Angew Chem Int Ed, 2019, 58: 178–183

    Article  Google Scholar 

  30. Lin WB, Li M, Fang L, Chen CF. Chin Chem Lett, 2018, 29: 40–46

    Article  Google Scholar 

  31. Huang F, Ma L, Che Y, Jiang H, Chen X, Wang Y. J Org Chem, 2018, 83: 733–739

    Article  Google Scholar 

  32. Sun W, Wang Y, Ma L, Zheng L, Fang W, Chen X, Jiang H. J Org Chem, 2018, 83: 14667–14675

    Article  Google Scholar 

  33. Xu Q, Wang C, Zhao Y, Zheng D, Shao C, Guo W, Deng X, Wang Y, Chen X, Zhu J, Jiang H. Org Lett, 2020, 22: 7397–7402

    Article  Google Scholar 

  34. Mohebbi AR, Wudl F. Chem Eur J, 2011, 17: 2642–2646

    Article  Google Scholar 

  35. Scherwitzl B, Lukesch W, Hirzer A, Albering J, Leising G, Resel R, Winkler A. J Phys Chem C, 2013, 117: 4115–4123

    Article  Google Scholar 

  36. Lee H, Zhang Y, Zhang L, Mirabito T, Burnett EK, Trahan S, Mohebbi AR, Mannsfeld SCB, Wudl F, Briseno AL. J Mater Chem C, 2014, 2: 3361–3366

    Article  Google Scholar 

  37. Gu X, Xu X, Li H, Liu Z, Miao Q. J Am Chem Soc, 2015, 137: 16203–16208

    Article  Google Scholar 

  38. Moral M, Pérez-Jiménez AJ, Sancho-García JC. J Phys Chem C, 2017, 121: 3171–3181

    Article  Google Scholar 

  39. Lakshminarayana AN, Chang J, Luo J, Zheng B, Huang KW, Chi C. Chem Commun, 2015, 51: 3604–3607

    Article  Google Scholar 

  40. Liu J, Narita A, Osella S, Zhang W, Schollmeyer D, Beljonne D, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 2602–2608

    Article  Google Scholar 

  41. Liu J, Mishra S, Pignedoli CA, Passerone D, Urgel JI, Fabrizio A, Lohr TG, Ma J, Komber H, Baumgarten M, Corminboeuf C, Berger R, Ruffieux P, Müllen K, Fasel R, Feng X. J Am Chem Soc, 2019, 141: 12011–12020

    Article  Google Scholar 

  42. Suresh JR, Whitener G, Theumer G, Bröcher DJ, Bauer I, Massa W, Knölker H. Chem Eur J, 2019, 25: 13759–13765

    Article  Google Scholar 

  43. Baumgärtner K, Chincha ALM, Dreuw A, Rominger F, Mastalerz M. Angew Chem Int Ed, 2016, 55: 15594–15598

    Article  Google Scholar 

  44. Duong HM, Bendikov M, Steiger D, Zhang Q, Sonmez G, Yamada J, Wudl F. Org Lett, 2003, 5: 4433–4436

    Article  Google Scholar 

  45. Fernández-García JM, Evans PJ, Medina Rivero S, Fernández I, García-Fresnadillo D, Perles J, Casado J, Martín N. J Am Chem Soc, 2018, 140: 17188–17196

    Article  Google Scholar 

  46. Pun SH, Chan CK, Luo J, Liu Z, Miao Q. Angew Chem Int Ed, 2018, 57: 1581–1586

    Article  Google Scholar 

  47. Lu J, Ho DM, Vogelaar NJ, Kraml CM, Bernhard S, Byrne N, Kim LR, Pascal RA. J Am Chem Soc, 2006, 128: 17043–17050

    Article  Google Scholar 

  48. Fan W, Winands T, Doltsinis NL, Li Y, Wang Z. Angew Chem Int Ed, 2017, 56: 15373–15377

    Article  Google Scholar 

  49. Clevenger RG, Kumar B, Menuey EM, Lee GH, Patterson D, Kilway KV. Chem Eur J, 2018, 24: 243–250

    Article  Google Scholar 

  50. Janke RH, Haufe G, Würthwein EU, Borkent JH. J Am Chem Soc, 1996, 118: 6031–6035

    Article  Google Scholar 

  51. Grimme S, Peyerimhoff SD. Chem Phys, 1996, 204: 411–417

    Article  Google Scholar 

  52. Herges R, Geuenich D. J Phys Chem A, 2001, 105: 3214–3220

    Article  Google Scholar 

  53. Geuenich D, Hess K, Köhler F, Herges R. Chem Rev, 2005, 105: 3758–3772

    Article  Google Scholar 

  54. Cyrański MK. Chem Rev, 2005, 105: 3773–3811

    Article  Google Scholar 

  55. Sato C, Suzuki S, Kozaki M, Okada K. Org Lett, 2016, 18: 1052–1055

    Article  Google Scholar 

  56. Wang Q, Gopalakrishna TY, Phan H, Herng TS, Dong S, Ding J, Chi C. Angew Chem Int Ed, 2017, 56: 11415–11419

    Article  Google Scholar 

  57. Hu Y, Wang D, Baumgarten M, Schollmeyer D, Müllen K, Narita A. Chem Commun, 2018, 54: 13575–13578

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21672026, 21971020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Jiang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Wang, C., Zheng, D. et al. A quadruple helicene with a rubicene core: synthesis, structural analyses and properties. Sci. China Chem. 64, 590–598 (2021). https://doi.org/10.1007/s11426-020-9913-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9913-5

Keywords

Navigation