Skip to main content
Log in

Recent advances in the synthesis of 1,1-diarylalkanes by transition-metal catalysis

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

1,1-Diaryl moieties are core structures in a wide range of bioactive and pharmaceutical compounds. Transition-metal catalysis is a convenient approach to accessing these invaluable compounds affording high yields and enantioselectivities. This review summarizes 1,1-diarylalkanes synthesis through transition metal catalysis. Particular focus is given to recent developments, such as reductive cross-electrophile couplings, benzylic C–H bond arylation, transformations involving metal migration, asymmetric hydrogenation of 1,1-diarylalkenes and three-component coupling reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McDonald RI, Liu G, Stahl SS. Chem Rev, 2011, 111: 2981–3019

    Article  Google Scholar 

  2. Merino E, Nevado C. Chem Soc Rev, 2014, 43: 6598–6608

    Article  Google Scholar 

  3. Cheng LJ, Mankad NP. Chem Soc Rev, 2020, 49: 8036–8064

    Article  Google Scholar 

  4. Peng JB, Wu FP, Wu XF. Chem Rev, 2019, 119: 2090–2127

    Article  Google Scholar 

  5. Sharma R, Katiyar D. Synthesis, 2016, 48: 2303–2322

    Article  Google Scholar 

  6. Malhotra B, Gandelman K, Sachse R, Wood N, Michel M. CMC, 2009, 16: 4481–4489

    Article  Google Scholar 

  7. Ameen D, Snape TJ. MedChemComm, 2013, 4: 893–907

    Article  Google Scholar 

  8. Vanjari R, Singh KN. Chem Soc Rev, 2015, 44: 8062–8096

    Article  Google Scholar 

  9. Li S, Huang K, Zhang J, Wu W, Zhang X. Org Lett, 2013, 15: 1036–1039

    Article  Google Scholar 

  10. Yin Y, Dai Y, Jia H, Li J, Bu L, Qiao B, Zhao X, Jiang Z. J Am Chem Soc, 2018, 140: 6083–6087

    Article  Google Scholar 

  11. Janssen-Müller D, Sahoo B, Sun S, Martin R. Isr J Chem, 2020, 60: 195–206

    Article  Google Scholar 

  12. Jia T, Cao P, Liao J. Chem Sci, 2018, 9: 546–559

    Article  Google Scholar 

  13. Mondal S, Panda G. RSC Adv, 2014, 4: 28317–28358

    Article  Google Scholar 

  14. Sun YY, Yi J, Lu X, Zhang ZQ, Xiao B, Fu Y. Chem Commun, 2014, 50: 11060–11062

    Article  Google Scholar 

  15. McLean EB, Gauchot V, Brunen S, Burns DJ, Lee AL. Chem Commun, 2019, 55: 4238–4241

    Article  Google Scholar 

  16. Zhu Z, Liu J, Dong S, Chen B, Wang Z, Tang R, Li Z. Asian J Org Chem, 2020, 9: 631–636

    Article  Google Scholar 

  17. Knappke CEI, Grupe S, Gärtner D, Corpet M, Gosmini C, von Wangelin AJ. Chem Eur J, 2014, 20: 6828–6842

    Article  Google Scholar 

  18. Zhang J, Lu G, Xu J, Sun H, Shen Q. Org Lett, 2016, 18: 2860–2863

    Article  Google Scholar 

  19. Poremba KE, Kadunce NT, Suzuki N, Cherney AH, Reisman SE. J Am Chem Soc, 2017, 139: 5684–5687

    Article  Google Scholar 

  20. Ackerman LKG, Anka-Lufford LL, Naodovic M, Weix DJ. Chem Sci, 2015, 6: 1115–1119

    Article  Google Scholar 

  21. Konev MO, Hanna LE, Jarvo ER. Angew Chem Int Ed, 2016, 55: 6730–6733

    Article  Google Scholar 

  22. Tellis JC, Primer DN, Molander GA. Science, 2014, 345: 433–436

    Article  Google Scholar 

  23. Taylor BLH, Swift EC, Waetzig JD, Jarvo ER. J Am Chem Soc, 2011, 133: 389–391

    Article  Google Scholar 

  24. Zhou Q, Srinivas HD, Dasgupta S, Watson MP. J Am Chem Soc, 2013, 135: 3307–3310

    Article  Google Scholar 

  25. Harris MR, Hanna LE, Greene MA, Moore CE, Jarvo ER. J Am Chem Soc, 2013, 135: 3303–3306

    Article  Google Scholar 

  26. Do HQ, Chandrashekar ERR, Fu GC. J Am Chem Soc, 2013, 135: 16288–16291

    Article  Google Scholar 

  27. Li Y, Wu D, Cheng H, Yin G. Angew Chem Int Ed, 2020, 59: 7990–8003

    Article  Google Scholar 

  28. Chen F, Chen K, Zhang Y, He Y, Wang YM, Zhu S. J Am Chem Soc, 2017, 139: 13929–13935

    Article  Google Scholar 

  29. Peng L, Li Y, Li Y, Wang W, Pang H, Yin G. ACS Catal, 2018, 8: 310–313

    Article  Google Scholar 

  30. Peng L, Li Z, Yin G. Org Lett, 2018, 20: 1880–1883

    Article  Google Scholar 

  31. Jiao K, Liu D, Ma H, Qiu H, Fang P, Mei T. Angew Chem Int Ed, 2020, 59: 6520–6524

    Article  Google Scholar 

  32. Kumar GS, Peshkov A, Brzozowska A, Nikolaienko P, Zhu C, Rueping M. Angew Chem Int Ed, 2020, 59: 6513–6519

    Article  Google Scholar 

  33. Li Y, Luo Y, Peng L, Li Y, Zhao B, Wang W, Pang H, Deng Y, Bai R, Lan Y, Yin G. Nat Commun, 2020, 11: 417

    Article  Google Scholar 

  34. Xia Y, Qiu D, Wang J. Chem Rev, 2017, 117: 13810–13889

    Article  Google Scholar 

  35. Zhao Q, Meng G, Nolan SP, Szostak M. Chem Rev, 2020, 120: 1981–2048

    Article  Google Scholar 

  36. Ma B, Chu Z, Huang B, Liu Z, Liu L, Zhang J. Angew Chem Int Ed, 2017, 56: 2749–2753

    Article  Google Scholar 

  37. Ma B, Wu J, Liu L, Zhang J. Chem Commun, 2017, 53: 10164–10167

    Article  Google Scholar 

  38. Qin Y, Zhu L, Luo S. Chem Rev, 2017, 117: 9433–9520

    Article  Google Scholar 

  39. Vasilopoulos A, Zultanski SL, Stahl SS. J Am Chem Soc, 2017, 139: 7705–7708

    Article  Google Scholar 

  40. Zhang W, Chen P, Liu G. J Am Chem Soc, 2017, 139: 7709–7712

    Article  Google Scholar 

  41. Zhang W, Wu L, Chen P, Liu G. Angew Chem Int Ed, 2019, 58: 6425–6429

    Article  Google Scholar 

  42. Yan SB, Zhang S, Duan WL. Org Lett, 2015, 17: 2458–2461

    Article  Google Scholar 

  43. Wang H, Tong HR, He G, Chen G. Angew Chem Int Ed, 2016, 55: 15387–15391

    Article  Google Scholar 

  44. Zhang FL, Hong K, Li TJ, Park H, Yu JQ. Science, 2016, 351: 252–256

    Article  Google Scholar 

  45. Chen G, Gong W, Zhuang Z, Andrä MS, Chen YQ, Hong X, Yang YF, Liu T, Houk KN, Yu JQ. Science, 2016, 353: 1023–1027

    Article  Google Scholar 

  46. Heitz DR, Tellis JC, Molander GA. J Am Chem Soc, 2016, 138: 12715–12718

    Article  Google Scholar 

  47. Cheng X, Lu H, Lu Z. Nat Commun, 2019, 10: 3549

    Article  Google Scholar 

  48. Cui X, Burgess K. Chem Rev, 2005, 105: 3272–3296

    Article  Google Scholar 

  49. Zhu Y, Burgess K. Acc Chem Res, 2012, 45: 1623–1636

    Article  Google Scholar 

  50. Mazuela J, Verendel JJ, Coll M, Schaffner B, Borner A, Andersson PG, Pamies O, Dieguez M. J Am Chem Soc, 2009, 131: 12344–12353

    Article  Google Scholar 

  51. Wang X, Guram A, Caille S, Hu J, Preston JP, Ronk M, Walker S. Org Lett, 2011, 13: 1881–1883

    Article  Google Scholar 

  52. Song S, Zhu SF, Yu YB, Zhou QL. Angew Chem Int Ed, 2013, 52: 1556–1559

    Article  Google Scholar 

  53. Bess EN, Sigman MS. Org Lett, 2013, 15: 646–649

    Article  Google Scholar 

  54. Chen J, Chen C, Ji C, Lu Z. Org Lett, 2016, 18: 1594–1597

    Article  Google Scholar 

  55. Bedford RB, Betham M, Charmant JPH, Haddow MF, Orpen AG, Pilarski LT, Coles SJ, Hursthouse MB. Organometallics, 2007, 26: 6346–6353

    Article  Google Scholar 

  56. Lu X, Lin S. J Org Chem, 2005, 70: 9651–9653

    Article  Google Scholar 

  57. Nishikata T, Yamamoto Y, Miyaura N. Angew Chem Int Ed, 2003, 42: 2768–2770

    Article  Google Scholar 

  58. Nishikata T, Yamamoto Y, Gridnev ID, Miyaura N. Organometallics, 2005, 24: 5025–5032

    Article  Google Scholar 

  59. Nishikata T, Yamamoto Y, Miyaura N. Adv Synth Catal, 2007, 349: 1759–1764

    Article  Google Scholar 

  60. Kobayashi K, Nishikata T, Yamamoto Y, Miyaura N. Bull Chem Soc Jpn, 2008, 81: 1019–1025

    Article  Google Scholar 

  61. Defieber C, Paquin JF, Serna S, Carreira EM. Org Lett, 2004, 6: 3873–3876

    Article  Google Scholar 

  62. Nishimura T, Takiguchi Y, Hayashi T. J Am Chem Soc, 2012, 134: 9086–9089

    Article  Google Scholar 

  63. Paquin JF, Defieber C, Stephenson CRJ, Carreira EM. J Am Chem Soc, 2005, 127: 10850–10851

    Article  Google Scholar 

  64. Yao J, Yin L, Shen Y, Lu T, Hayashi T, Dou X. Org Lett, 2018, 20: 6882–6885

    Article  Google Scholar 

  65. Chen G, Xing J, Cao P, Liao J. Tetrahedron, 2012, 68: 5908–5911

    Article  Google Scholar 

  66. Wang J, Wang B, Cao P, Liao J. Tetrahedron Lett, 2014, 55: 3450–3453

    Article  Google Scholar 

  67. Wang J, Wang M, Cao P, Jiang L, Chen G, Liao J. Angew Chem Int Ed, 2014, 53: 6673–6677

    Article  Google Scholar 

  68. Liu R, Yang Z, Ni Y, Song K, Shen K, Lin S, Pan Q. J Org Chem, 2017, 82: 8023–8030

    Article  Google Scholar 

  69. Wu C, Yue G, Nielsen CDT, Xu K, Hirao H, Zhou JS. J Am Chem Soc, 2016, 138: 742–745

    Article  Google Scholar 

  70. Lee A, Kim H. J Am Chem Soc, 2015, 137: 11250–11253

    Article  Google Scholar 

  71. Polet D, Rathgeb X, Falciola C, Langlois JB, El Hajjaji S, Alexakis A. Chem-A Eur J, 2009, 15: 1205–1216

    Article  Google Scholar 

  72. Selim K, Matsumoto Y, Yamada K, Tomioka K. Angew Chem Int Ed, 2009, 48: 8733–8735

    Article  Google Scholar 

  73. Ohmiya H, Makida Y, Li D, Tanabe M, Sawamura M. J Am Chem Soc, 2010, 132: 879–889

    Article  Google Scholar 

  74. Gligorich KM, Cummings SA, Sigman MS. J Am Chem Soc, 2007, 129: 14193–14195

    Article  Google Scholar 

  75. Iwai Y, Gligorich K, Sigman M. Angew Chem Int Ed, 2008, 47: 3219–3222

    Article  Google Scholar 

  76. Podhajsky SM, Iwai Y, Cook-Sneathen A, Sigman MS. Tetrahedron, 2011, 67: 4435–4441

    Article  Google Scholar 

  77. Semba K, Ariyama K, Zheng H, Kameyama R, Sakaki S, Nakao Y. Angew Chem Int Ed, 2016, 55: 6275–6279

    Article  Google Scholar 

  78. Friis SD, Pirnot MT, Buchwald SL. J Am Chem Soc, 2016, 138: 8372–8375

    Article  Google Scholar 

  79. Gribble MW Jr., Guo S, Buchwald SL. J Am Chem Soc, 2018, 140: 5057–5060

    Article  Google Scholar 

  80. Xiao LJ, Cheng L, Feng WM, Li ML, Xie JH, Zhou QL. Angew Chem Int Ed, 2018, 57: 461–464

    Article  Google Scholar 

  81. Chen YG, Shuai B, Xu XT, Li YQ, Yang QL, Qiu H, Zhang K, Fang P, Mei TS. J Am Chem Soc, 2019, 141: 3395–3399

    Article  Google Scholar 

  82. Lv XY, Fan C, Xiao LJ, Xie JH, Zhou QL. CCS Chem, 2019, 1: 328–334

    Article  Google Scholar 

  83. He Y, Liu C, Yu L, Zhu S. Angew Chem Int Ed, 2020, 59: 21530–21534

    Article  Google Scholar 

  84. He Y, Cai Y, Zhu S. J Am Chem Soc, 2017, 139: 1061–1064

    Article  Google Scholar 

  85. Whyte A, Torelli A, Mirabi B, Zhang A, Lautens M. ACS Catal, 2020, 10: 11578–11622

    Article  Google Scholar 

  86. Semba K, Nakao Y. J Am Chem Soc, 2014, 136: 7567–7570

    Article  Google Scholar 

  87. Smith KB, Logan KM, You W, Brown MK. Chem Eur J, 2014, 20: 12032–12036

    Article  Google Scholar 

  88. Logan KM, Smith KB, Brown MK. Angew Chem Int Ed, 2015, 54: 5228–5231

    Article  Google Scholar 

  89. Chen B, Cao P, Yin X, Liao Y, Jiang L, Ye J, Wang M, Liao J. ACS Catal, 2017, 7: 2425–2429

    Article  Google Scholar 

  90. Huang Y, Brown MK. Angew Chem Int Ed, 2019, 58: 6048–6052

    Article  Google Scholar 

  91. Semba K, Ohtagaki Y, Nakao Y. Org Lett, 2016, 18: 3956–3959

    Article  Google Scholar 

  92. Wang W, Ding C, Pang H, Yin G. Org Lett, 2019, 21: 3968–3971

    Article  Google Scholar 

  93. Chen LA, Lear AR, Gao P, Brown MK. Angew Chem Int Ed, 2019, 58: 10956–10960

    Article  Google Scholar 

  94. Wang W, Ding C, Li Y, Li Z, Li Y, Peng L, Yin G. Angew Chem Int Ed, 2019, 58: 4612–4616

    Article  Google Scholar 

  95. Zhao B, Li Y, Li H, Belal M, Zhu L, Yin G. Sci Bull, 2020, https://doi.org/10.1016/j.scib.2020.10.001

  96. Gao P, Chen LA, Brown MK. J Am Chem Soc, 2018, 140: 10653–10657

    Article  Google Scholar 

  97. Anthony D, Lin Q, Baudet J, Diao T. Angew Chem Int Ed, 2019, 58: 3198–3202

    Article  Google Scholar 

  98. Wang F, Wang D, Mu X, Chen P, Liu G. J Am Chem Soc, 2014, 136: 10202–10205

    Article  Google Scholar 

  99. Wu L, Wang F, Wan X, Wang D, Chen P, Liu G. J Am Chem Soc, 2017, 139: 2904–2907

    Article  Google Scholar 

  100. Wang D, Wu L, Wang F, Wan X, Chen P, Lin Z, Liu G. J Am Chem Soc, 2017, 139: 6811–6814

    Article  Google Scholar 

  101. Yu X, Zhao Q, Chen J, Chen J, Xiao W. Angew Chem Int Ed, 2018, 57: 15505–15509

    Article  Google Scholar 

  102. Ouyang XH, Song RJ, Hu M, Yang Y, Li JH. Angew Chem Int Ed, 2016, 55: 3187–3191

    Article  Google Scholar 

  103. Yong X, Han YF, Li Y, Song RJ, Li JH. Chem Commun, 2018, 54: 12816–12819

    Article  Google Scholar 

  104. Kc S, Dhungana RK, Shrestha B, Thapa S, Khanal N, Basnet P, Lebrun RW, Giri R. J Am Chem Soc, 2018, 140: 9801–9805

    Article  Google Scholar 

  105. Sakurai S, Matsumoto A, Kano T, Maruoka K. J Am Chem Soc, 2020, 142: 19017–19022

    Article  Google Scholar 

  106. Thiery E, Harakat D, Le Bras J, Muzart J. Organometallics, 2008, 27: 3996–4004

    Article  Google Scholar 

  107. Urkalan K, Sigman M. Angew Chem Int Ed, 2009, 48: 3146–3149

    Article  Google Scholar 

  108. Werner EW, Urkalan KB, Sigman MS. Org Lett, 2010, 12: 2848–2851

    Article  Google Scholar 

  109. Saini V, Liao L, Wang Q, Jana R, Sigman MS. Org Lett, 2013, 15: 5008–5011

    Article  Google Scholar 

  110. Orlandi M, Hilton MJ, Yamamoto E, Toste FD, Sigman MS. J Am Chem Soc, 2017, 139: 12688–12695

    Article  Google Scholar 

  111. Li Z, Wu D, Ding C, Yin G. CCS Chem, 2020, 2: 576–582

    Google Scholar 

  112. He J, Li S, Deng Y, Fu H, Laforteza BN, Spangler JE, Homs A, Yu JQ. Science, 2014, 343: 1216–1220

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21702151, 21871211) and the Fundamental Research Funds for Central Universities (2042019kf0208). We thank Profs. Qianghui Zhou, Wen-Bo Liu, Aiwen Lei and Xumu Zhang at Wuhan University for lending lab space and sharing the basic instruments. We thank Dr. Simon Partridge from Liwen Bianji, Edanz Editing China (http://www.liwenbianji.cn/ac) for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuqiang Lu or Guoyin Yin.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belal, M., Li, Z., Lu, X. et al. Recent advances in the synthesis of 1,1-diarylalkanes by transition-metal catalysis. Sci. China Chem. 64, 513–533 (2021). https://doi.org/10.1007/s11426-020-9910-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9910-2

Keywords

Navigation