Skip to main content
Log in

Catalytic enantioselective synthesis of β-amino alcohols by nitrene insertion

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Chiral β-amino alcohols are important building blocks for the synthesis of drugs, natural products, chiral auxiliaries, chiral ligands and chiral organocatalysts. The catalytic asymmetric β-amination of alcohols offers a direct strategy to access this class of molecules. Herein, we report a general intramolecular C(sp3)-H nitrene insertion method for the synthesis of chiral oxazolidin-2-ones as precursors of chiral β-amino alcohols. Specifically, the ring-closing C(sp3)-H amination of N-benzoyloxycarbamates with 2 mol% of a chiral ruthenium catalyst provides cyclic carbamates in up to 99% yield and with up to 99% ee. The method is applicable to benzylic, allylic, and propargylic C-H bonds and can even be applied to completely non-activated C (sp3)-H bonds, although with somewhat reduced yields and stereoselectivities. The obtained cyclic carbamates can subsequently be hydrolyzed to obtain chiral β-amino alcohols. The method is very practical as the catalyst can be easily synthesized on a gram scale and can be recycled after the reaction for further use. The synthetic value of the new method is demonstrated with the asymmetric synthesis of a chiral oxazolidin-2-one as intermediate for the synthesis of the natural product aurantioclavine and chiral β-amino alcohols that are intermediates for the synthesis of chiral amino acids, indane-derived chiral Box-ligands, and the natural products dihydrohamacanthin A and dragmacidin A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergmeier SC. Tetrahedron, 2000, 56: 2561–2576

    CAS  Google Scholar 

  2. Heravi MM, Lashaki TB, Fattahi B, Zadsirjan V. RSC Adv, 2018, 8: 6634–6659

    CAS  Google Scholar 

  3. Ager DJ, Prakash I, Schaad DR. Chem Rev, 1996, 96: 835–876

    CAS  PubMed  Google Scholar 

  4. Fache F, Schulz E, Tommasino ML, Lemaire M. Chem Rev, 2000, 100: 2159–2232

    CAS  PubMed  Google Scholar 

  5. Robak MAT, Herbage MA, Ellman JA. Chem Rev, 2010, 110: 36003740

    Google Scholar 

  6. Donohoe TJ, Callens CKA, Flores A, Lacy AR, Rathi AH. Chem Eur J, 2011, 17: 58–76

    CAS  PubMed  Google Scholar 

  7. Li G, Chang HT, Sharpless KB. Angew Chem Int Ed Engl, 1996, 35: 451–454

    CAS  Google Scholar 

  8. Nilov D, Reiser O. Adv Synthesis Catal, 2002, 344: 1169–1173

    CAS  Google Scholar 

  9. Pavlidis IV, Weiβ MS, Genz M, Spurr P, Hanlon SP, Wirz B, Iding H, Bornscheuer UT. Nat Chem, 2016, 8: 1076–1082

    CAS  PubMed  Google Scholar 

  10. Gupta P, Mahajan N. New J Chem, 2018, 42: 12296–12327

    CAS  Google Scholar 

  11. Nakafuku KM, Zhang Z, Wappes EA, Stateman LM, Chen AD, Nagib DA. Nat Chem, 2020, 12: 697–704

    PubMed  PubMed Central  Google Scholar 

  12. Che CM, Lo VKY, Zhou CY, Huang JS. Chem Soc Rev, 2011, 40: 1950

    CAS  PubMed  Google Scholar 

  13. Dequirez G, Pons V, Dauban P. Angew Chem Int Ed, 2012, 51: 7384–7395

    CAS  Google Scholar 

  14. Roizen JL, Harvey ME, Du Bois J. Acc Chem Res, 2012, 45: 911–922

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Park Y, Kim Y, Chang S. Chem Rev, 2017, 117: 9247–9301

    CAS  PubMed  Google Scholar 

  16. Hayashi H, Uchida T. Eur J Org Chem, 2020, 2020: 909–916

    CAS  Google Scholar 

  17. van Vliet KM, de Bruin B. ACS Catal, 2020, 10: 4751–4769

    CAS  Google Scholar 

  18. Liang JL, Yuan SX, Huang JS, Yu WY, Che CM. Angew Chem Int Ed, 2002, 41: 3465–3468

    CAS  Google Scholar 

  19. Milczek E, Boudet N, Blakey S. Angew Chem Int Ed, 2008, 47: 6825–6828

    CAS  Google Scholar 

  20. Zalatan DN, Du Bois J. J Am Chem Soc, 2008, 130: 9220–9221

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lebel H, Huard K, Lectard S. J Am Chem Soc, 2005, 127: 14198–14199

    CAS  PubMed  Google Scholar 

  22. Huard K, Lebel H. Chem Eur J, 2008, 14: 6222–6230

    CAS  PubMed  Google Scholar 

  23. Reddy RP, Davies HML. Org Lett, 2006, 8: 5013–5016

    CAS  PubMed  Google Scholar 

  24. Zheng Y, Tan Y, Harms K, Marsch M, Riedel R, Zhang L, Meggers E. J Am Chem Soc, 2017, 139: 4322–4325

    CAS  PubMed  Google Scholar 

  25. For ruthenium catalyzed asymmetric C(sp3)-H aminations through transition metal nitrenoids, see for example: (a) Zhou XG, Yu XQ, Huang JS, Che CM. Chem Commun, 1999, 2377–2378

  26. Nishioka Y, Uchida T, Katsuki T. Angew Chem Int Ed, 2013, 52: 1739–1742

    CAS  Google Scholar 

  27. Xing Q, Chan CM, Yeung YW, Yu WY. J Am Chem Soc, 2019, 141: 3849–3853

    CAS  PubMed  Google Scholar 

  28. Zhou Z, Chen S, Hong Y, Winterling E, Tan Y, Hemming M, Harms K, Houk KN, Meggers E. J Am Chem Soc, 2019, 141: 19048–19057

    CAS  PubMed  Google Scholar 

  29. Li L, Han F, Nie X, Hong Y, Ivlev S, Meggers E. Angew Chem Int Ed, 2020, 59: 12392–12395

    CAS  Google Scholar 

  30. For recent contribtions from other groups regarding asymmetric catalysis with chiral-at-metal complexes, see for example: (a) Carmona M, Rodríguez R, Passarelli V, Lahoz FJ, García-Orduña P, Carmona D. J Am Chem Soc, 2018, 140: 912–915

    CAS  PubMed  Google Scholar 

  31. Liang H, Xu GQ, Feng ZT, Wang ZY, Xu PF. J Org Chem, 2019, 84: 60–72

    CAS  PubMed  Google Scholar 

  32. Qurban S, Du Y, Gong J, Lin SX, Kang Q. Chem Commun, 2019, 55: 249–252

    CAS  Google Scholar 

  33. Wan Q, Li S, Kang Q, Yuan Y, Du Y. J Org Chem, 2019, 84: 15201–15211

    CAS  PubMed  Google Scholar 

  34. Hu L, Lin S, Li S, Kang Q, Du Y. ChemCatChem, 2020, 12: 118–121

    CAS  Google Scholar 

  35. Qin J, Zhou Z, Cui T, Hemming M, Meggers E. Chem Sci, 2019, 10: 3202–3207

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou Z, Chen S, Qin J, Nie X, Zheng X, Harms K, Riedel R, Houk KN, Meggers E. Angew Chem Int Ed, 2019, 58: 1088–1093

    CAS  Google Scholar 

  37. Zhou Z, Tan Y, Yamahira T, Ivlev S, Xie X, Riedel R, Hemming M, Kimura M, Meggers E. Chem, 2020, 6: 2024–2034

    CAS  Google Scholar 

  38. Prosser TJ, Marcantonio AF, Genge CA, Breslow DS. Tetrahedron Lett, 1964, 5: 2483–2487

    Google Scholar 

  39. Jiang H, Lang K, Lu H, Wojtas L, Zhang XP. J Am Chem Soc, 2017, 139: 9164–9167

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee J, Lee J, Jung H, Kim D, Park J, Chang S. J Am Chem Soc, 2020, 142: 12324–12332

    CAS  PubMed  Google Scholar 

  41. Tan Y, Chen S, Zhou Z, Hong Y, Ivlev S, Houk KN, Meggers E. Angew Chem Int Ed, 2020, 59: 21706–21710

    CAS  Google Scholar 

  42. Tan Y, Han F, Hemming M, Wang J, Harms K, Xie X, Meggers E. Org Lett, 2020, 22: 6653–6656

    CAS  PubMed  Google Scholar 

  43. The method also works for the amination of C(sp2)-H bonds, see Supporting Information online for more details

  44. For a recent example of a ruthenium-catalyzed asymmetric C(sp2)-H functionalization, see: Li G, Liu Q, Vasamsetty L, Guo W, Wang J. Angew Chem Int Ed, 2020, 59: 3475–3479

    CAS  Google Scholar 

  45. Skepper CK, Moreau RJ, Appleton BA, Benton BM, Drumm III JE, Feng BY, Geng M, Hu C, Li C, Lingel A, Lu Y, Mamo M, Mergo W, Mostafavi M, Rath CM, Steffek M, Takeoka KT, Uehara K, Wang L, Wei JR, Xie L, Xu W, Zhang Q, de Vicente J. J Med Chem, 2018, 61: 3325–3349

    CAS  PubMed  Google Scholar 

  46. Ermert P, Meyer J, Stucki C, Schneebeli J, Obrecht JP. Tetrahedron Lett, 1988, 29: 1265–1268

    CAS  Google Scholar 

  47. Davies IW, Senanayake CH, Larsen RD, Verhoeven TR, Reider PJ. Tetrahedron Lett, 1996, 37: 813–814

    CAS  Google Scholar 

  48. Desimoni G, Faita G, Jergensen KA. Chem Rev, 2006, 106: 3561–3651

    CAS  PubMed  Google Scholar 

  49. Park J, Kim DH, Das T, Cho CG. Org Lett, 2016, 18: 5098–5101

    CAS  PubMed  Google Scholar 

  50. Yang CG, Wang J, Tang XX, Jiang B. Tetrahedron-Asymmetry, 2002, 13: 383–394

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (ME 1805/15-1). We thank Marcel Hemming for the synthesis of some substrate intermediates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Meggers.

Ethics declarations

The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Tan, Y., Shen, X. et al. Catalytic enantioselective synthesis of β-amino alcohols by nitrene insertion. Sci. China Chem. 64, 452–458 (2021). https://doi.org/10.1007/s11426-020-9906-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9906-x

Keywords

Navigation