Skip to main content
Log in

A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) have demonstrated great application prospects in large-scale energy storage systems and low-speed electric vehicles due to the cost effectiveness and abundant resources. Layered transition-metal oxides are recognized as one of the most attractive sodium-ion storage cathode candidates by virtue of their high compositional diversity, environmental friendliness, ease of synthesis, and promising theoretical capacities. The practicability, however, is still limited by the fact that the energy densities of most Na-storage layered oxide cathodes solely using the conventional cationic redox are not comparable to those of the lithium-ion storage counterparts. Recently, the strategy of activating anionic redox (O2−/On) which is popular in Li-rich layered materials has been successfully applied in oxide cathodes of SIBs to promote the energy density to a new level. It is interesting to note that excess Na is not the prerequisite to induce anionic redox in sodium oxides, indicating a new mechanism underlying Na-ion materials. Herein, the latest advances on the anionic redox chemistry in layered oxide cathodes for SIBs, including the fundamental theories, triggering strategies, and applicable cathode materials, are comprehensively reviewed. Moreover, the challenges (mainly O2 release) facing anionic redox are discussed, and the possible remedies are outlined for future developments toward a highly reversible oxygen usage. We believe that this review can provide a valuable guidance for the exploration of high-energy layered oxide cathode materials of SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. Nat Energy, 2018, 3: 267–278

    CAS  Google Scholar 

  2. Li M, Lu J, Chen Z, Amine K. Adv Mater, 2018, 30: 1800561

    Google Scholar 

  3. Goodenough JB, Gao H. Sci China Chem, 2019, 62: 1555–1556

    CAS  Google Scholar 

  4. Manthiram A. ACS Cent Sci, 2017, 3: 1063–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu Y, Zhang Q, Chen J. Sci China Chem, 2019, 62: 533–548

    CAS  Google Scholar 

  6. Kim H, Kim H, Ding Z, Lee MH, Lim K, Yoon G, Kang K. Adv Energy Mater, 2016, 6: 1600943

    Google Scholar 

  7. Nayak PK, Yang L, Brehm W, Adelhelm P. Angew Chem Int Ed, 2018, 57: 102–120

    CAS  Google Scholar 

  8. Vaalma C, Buchholz D, Weil M, Passerini S. Nat Rev Mater, 2018, 3: 18013

    Google Scholar 

  9. Hirsh HS, Li Y, Tan DHS, Zhang M, Zhao E, Meng YS. Adv Energy Mater, 2020, 10: 2001274

    CAS  Google Scholar 

  10. Xu GL, Amine R, Abouimrane A, Che H, Dahbi M, Ma ZF, Saadoune I, Alami J, Mattis WL, Pan F, Chen Z, Amine K. Adv Energy Mater, 2018, 8: 1702403

    Google Scholar 

  11. Hwang JY, Myung ST, Sun YK. Chem Soc Rev, 2017, 46: 3529–3614

    CAS  PubMed  Google Scholar 

  12. Wang QC, Hu E, Pan Y, Xiao N, Hong F, Fu ZW, Wu XJ, Bak SM, Yang XQ, Zhou YN. Adv Sci, 2017, 4: 1700219

    Google Scholar 

  13. Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou SL, Dou SX. Small, 2019, 15: 1805381

    Google Scholar 

  14. Hasa I, Buchholz D, Passerini S, Hassoun J. ACS Appl Mater Interfaces, 2015, 7: 5206–5212

    CAS  PubMed  Google Scholar 

  15. You Y, Manthiram A. Adv Energy Mater, 2018, 8: 1701785

    Google Scholar 

  16. Wang PF, You Y, Yin YX, Guo YG. Adv Energy Mater, 2018, 8: 1701912

    Google Scholar 

  17. Li Y, Yang Z, Xu S, Mu L, Gu L, Hu YS, Li H, Chen L. Adv Sci, 2015, 2: 1500031

    Google Scholar 

  18. Zheng L, Li J, Obrovac MN. Chem Mater, 2017, 29: 1623–1631

    CAS  Google Scholar 

  19. Pang WK, Kalluri S, Peterson VK, Sharma N, Kimpton J, Johannessen B, Liu HK, Dou SX, Guo Z. Chem Mater, 2015, 27: 3150–3158

    CAS  Google Scholar 

  20. Han MH, Gonzalo E, Singh G, Rojo T. Energy Environ Sci, 2015, 8: 81–102

    Google Scholar 

  21. Ortiz-Vitoriano N, Drewett NE, Gonzalo E, Rojo T. Energy Environ Sci, 2017, 10: 1051–1074

    CAS  Google Scholar 

  22. Wang QC, Meng JK, Yue XY, Qiu QQ, Song Y, Wu XJ, Fu ZW, Xia YY, Shadike Z, Wu J, Yang XQ, Zhou YN. J Am Chem Soc, 2019, 141: 840–848

    CAS  PubMed  Google Scholar 

  23. Zhao C, Yao Z, Wang Q, Li H, Wang J, Liu M, Ganapathy S, Lu Y, Cabana J, Li B, Bai X, Aspuru-Guzik A, Wagemaker M, Chen L, Hu YS. J Am Chem Soc, 2020, 142: 5742–5750

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Liu Y, Zhao X, He L, Liu H, Song Y, Sun S, Li Q, Xing X, Chen J. Adv Mater, 2020, 32: 1906348

    CAS  Google Scholar 

  25. Liu R, Xu G, Li Q, Zheng S, Zheng G, Gong Z, Li Y, Kruskop E, Fu R, Chen Z, Amine K, Yang Y. ACS Appl Mater Interfaces, 2017, 9: 43632–43639

    CAS  PubMed  Google Scholar 

  26. Chen S, Wu C, Shen L, Zhu C, Huang Y, Xi K, Maier J, Yu Y. Adv Mater, 2017, 29: 1700431

    Google Scholar 

  27. Zhang H, Hasa I, Buchholz D, Qin B, Geiger D, Jeong S, Kaiser U, Passerini S. NPG Asia Mater, 2017, 9: e370

    CAS  Google Scholar 

  28. Zhang J, Yuan T, Wan H, Qian J, Ai X, Yang H, Cao Y. Sci China Chem, 2017, 60: 1546–1553

    CAS  Google Scholar 

  29. Ma F, Li Q, Wang T, Zhang H, Wu G. Sci Bull, 2017, 62: 358–368

    CAS  Google Scholar 

  30. You Y, Wu XL, Yin YX, Guo YG. Energy Environ Sci, 2014, 7: 1643–1647

    CAS  Google Scholar 

  31. Qian J, Wu C, Cao Y, Ma Z, Huang Y, Ai X, Yang H. Adv Energy Mater, 2018, 8: 1702619

    Google Scholar 

  32. Yin X, Sarkar S, Shi S, Huang Q-, Zhao H, Yan L, Zhao Y, Zhang J. Adv Funct Mater, 2020, 30: 1908445

    CAS  Google Scholar 

  33. Delmas C, Fouassier C, Hagenmuller P. Physica B+C, 1980, 99: 81–85

    CAS  Google Scholar 

  34. Wang PF, Yao HR, Liu XY, Yin YX, Zhang JN, Wen Y, Yu X, Gu L, Guo YG. Sci Adv, 2018, 4: eaar6018

    PubMed  PubMed Central  Google Scholar 

  35. Clément RJ, Billaud J, Robert Armstrong A, Singh G, Rojo T, Bruce PG, Grey CP. Energy Environ Sci, 2016, 9: 3240–3251

    Google Scholar 

  36. Hasa I, Passerini S, Hassoun J. J Mater Chem A, 2017, 5: 4467–4477

    CAS  Google Scholar 

  37. Zhang K, Kim D, Hu Z, Park M, Noh G, Yang Y, Zhang J, Lau VWH, Chou SL, Cho M, Choi SY, Kang YM. Nat Commun, 2019, 10: 5203

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng L, Bennett JC, Obrovac MN. J Electrochem Soc, 2019, 166: A2058–A2064

    CAS  Google Scholar 

  39. Wu X, Xu GL, Zhong G, Gong Z, McDonald MJ, Zheng S, Fu R, Chen Z, Amine K, Yang Y. ACS Appl Mater Interfaces, 2016, 8: 22227–22237

    CAS  PubMed  Google Scholar 

  40. Liu Y, Shen Q, Zhao X, Zhang J, Liu X, Wang T, Zhang N, Jiao L, Chen J, Fan L. Adv Funct Mater, 2020, 30: 1907837

    CAS  Google Scholar 

  41. Yu K, Pan X, Zhang G, Liao X, Zhou X, Yan M, Xu L, Mai L. Adv Energy Mater, 2018, 8: 1802369

    Google Scholar 

  42. Kalluri S, Seng KH, Pang WK, Guo Z, Chen Z, Liu HK, Dou SX. ACS Appl Mater Interfaces, 2014, 6: 8953–8958

    CAS  PubMed  Google Scholar 

  43. Kaliyappan K, Liu J, Xiao B, Lushington A, Li R, Sham TK, Sun X. Adv Funct Mater, 2017, 27: 1701870

    Google Scholar 

  44. Yu CY, Park JS, Jung HG, Chung KY, Aurbach D, Sun YK, Myung ST. Energy Environ Sci, 2015, 8: 2019–2026

    CAS  Google Scholar 

  45. Xu H, Guo S, Zhou H. J Mater Chem A, 2019, 7: 23662–23678

    CAS  Google Scholar 

  46. Zhao E, Yu X, Wang F, Li H. Sci China Chem, 2017, 60: 1483–1493

    CAS  Google Scholar 

  47. Jin T, Wang PF, Wang QC, Zhu K, Deng T, Zhang J, Zhang W, Yang XQ, Jiao L, Wang C. Angew Chem Int Ed, 2020, 59: 14511–14516

    CAS  Google Scholar 

  48. Bai X, Sathiya M, Mendoza-Sánchez B, Iadecola A, Vergnet J, Dedryvère R, Saubanère M, Abakumov AM, Rozier P, Tarascon JM. Adv Energy Mater, 2018, 8: 1802379

    Google Scholar 

  49. Maitra U, House RA, Somerville JW, Tapia-Ruiz N, Lozano JG, Guerrini N, Hao R, Luo K, Jin L, Pérez-Osorio MA, Massel F, Pickup DM, Ramos S, Lu X, McNally DE, Chadwick AV, Giustino F, Schmitt T, Duda LC, Roberts MR, Bruce PG. Nat Chem, 2018, 10: 288–295

    CAS  PubMed  Google Scholar 

  50. Whittingham MS. Science, 1976, 192: 1126–1127

    CAS  PubMed  Google Scholar 

  51. Lazzari M, Scrosati B. J Electrochem Soc, 1980, 127: 773–774

    CAS  Google Scholar 

  52. Sekai K, Azuma H, Omaru A, Fujita S, Imoto H, Endo T, Yamaura K, Nishi Y, Mashiko S, Yokogawa M. J Power Sources, 1993, 43: 241–244

    CAS  Google Scholar 

  53. Rouxel J. Chem Eur J, 1996, 2: 1053–1059

    CAS  Google Scholar 

  54. Amatucci GG, Tarascon JM, Klein LC. J Electrochem Soc, 1996, 143: 1114–1123

    CAS  Google Scholar 

  55. Tarascon JM, Vaughan G, Chabre Y, Seguin L, Anne M, Strobel P, Amatucci G. J Solid State Chem, 1999, 147: 410–420

    CAS  Google Scholar 

  56. Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B. Nature, 1998, 392: 694–696

    CAS  Google Scholar 

  57. Kalyani P, Chitra S, Mohan T, Gopukumar S. J Power Sources, 1999, 80: 103–106

    CAS  Google Scholar 

  58. Robertson AD, Bruce PG. Chem Mater, 2003, 15: 1984–1992

    CAS  Google Scholar 

  59. Zhang J, Guo X, Yao S, Qiu X. Sci China Chem, 2016, 59: 1479–1485

    CAS  Google Scholar 

  60. Yu DYW, Yanagida K, Kato Y, Nakamura H. J Electrochem Soc, 2009, 156: A417

    CAS  Google Scholar 

  61. Boulineau A, Simonin L, Colin JF, Bourbon C, Patoux S. Nano Lett, 2013, 13: 3857–3863

    CAS  PubMed  Google Scholar 

  62. Muhammad S, Kim H, Kim Y, Kim D, Song JH, Yoon J, Park JH, Ahn SJ, Kang SH, Thackeray MM, Yoon WS. Nano Energy, 2016, 21: 172–184

    CAS  Google Scholar 

  63. Koga H, Croguennec L, Ménétrier M, Mannessiez P, Weill F, Delmas C, Belin S. J Phys Chem C, 2014, 118: 5700–5709

    CAS  Google Scholar 

  64. Gent WE, Lim K, Liang Y, Li Q, Barnes T, Ahn SJ, Stone KH, McIntire M, Hong J, Song JH, Li Y, Mehta A, Ermon S, Tyliszczak T, Kilcoyne D, Vine D, Park JH, Doo SK, Toney MF, Yang W, Prendergast D, Chueh WC. Nat Commun, 2017, 8: 2091

    PubMed  PubMed Central  Google Scholar 

  65. Shadike Z, Zhao E, Zhou YN, Yu X, Yang Y, Hu E, Bak S, Gu L, Yang XQ. Adv Energy Mater, 2018, 8: 1702588

    Google Scholar 

  66. McCalla E, Abakumov AM, Saubanère M, Foix D, Berg EJ, Rousse G, Doublet ML, Gonbeau D, Novák P, van Tendeloo G, Dominko R, Tarascon JM. Science, 2015, 350: 1516–1521

    CAS  PubMed  Google Scholar 

  67. Li X, Qiao Y, Guo S, Xu Z, Zhu H, Zhang X, Yuan Y, He P, Ishida M, Zhou H. Adv Mater, 2018, 30: 1705197

    Google Scholar 

  68. Saubanère M, McCalla E, Tarascon JM, Doublet ML. Energy Environ Sci, 2016, 9: 984–991

    Google Scholar 

  69. Xie Y, Saubanère M, Doublet ML. Energy Environ Sci, 2017, 10: 266–274

    CAS  Google Scholar 

  70. Seo DH, Lee J, Urban A, Malik R, Kang SY, Ceder G. Nat Chem, 2016, 8: 692–697

    CAS  PubMed  Google Scholar 

  71. Luo K, Roberts MR, Hao R, Guerrini N, Pickup DM, Liu YS, Edström K, Guo J, Chadwick AV, Duda LC, Bruce PG. Nat Chem, 2016, 8: 684–691

    CAS  PubMed  Google Scholar 

  72. Sathiya M, Abakumov AM, Foix D, Rousse G, Ramesha K, Saubanère M, Doublet ML, Vezin H, Laisa CP, Prakash AS, Gonbeau D, van Tendeloo G, Tarascon JM. Nat Mater, 2015, 14: 230–238

    CAS  PubMed  Google Scholar 

  73. Pearce PE, Perez AJ, Rousse G, Saubanère M, Batuk D, Foix D, McCalla E, Abakumov AM, van Tendeloo G, Doublet ML, Tarascon JM. Nat Mater, 2017, 16: 580–586

    CAS  PubMed  Google Scholar 

  74. Yabuuchi N, Hara R, Kajiyama M, Kubota K, Ishigaki T, Hoshikawa A, Komaba S. Adv Energy Mater, 2014, 4: 1301453

    Google Scholar 

  75. Yabuuchi N, Hara R, Kubota K, Paulsen J, Kumakura S, Komaba S. J Mater Chem A, 2014, 2: 16851–16855

    CAS  Google Scholar 

  76. Sato K, Nakayama M, Glushenkov AM, Mukai T, Hashimoto Y, Yamanaka K, Yoshimura M, Ohta T, Yabuuchi N. Chem Mater, 2017, 29: 5043–5047

    CAS  Google Scholar 

  77. Kobayashi T, Zhao W, Rajendra HB, Yamanaka K, Ohta T, Yabuuchi N. Small, 2020, 16: 1902462

    CAS  Google Scholar 

  78. Goodenough JB, Kim Y. Chem Mater, 2010, 22: 587–603

    CAS  Google Scholar 

  79. Luo K, Roberts MR, Guerrini N, Tapia-Ruiz N, Hao R, Massel F, Pickup DM, Ramos S, Liu YS, Guo J, Chadwick AV, Duda LC, Bruce PG. J Am Chem Soc, 2016, 138: 11211–11218

    CAS  PubMed  Google Scholar 

  80. Zhang X, Qiao Y, Guo S, Jiang K, Xu S, Xu H, Wang P, He P, Zhou H. Adv Mater, 2019, 31: 1807770

    Google Scholar 

  81. Mortemard de Boisse B, Nishimura S, Watanabe E, Lander L, Tsuchimoto A, Kikkawa J, Kobayashi E, Asakura D, Okubo M, Yamada A. Adv Energy Mater, 2018, 8: 1800409

    Google Scholar 

  82. Zheng W, Liu Q, Wang Z, Wu Z, Gu S, Cao L, Zhang K, Fransaer J, Lu Z. Energy Storage Mater, 2020, 28: 300–306

    Google Scholar 

  83. Assat G, Tarascon JM. Nat Energy, 2018, 3: 373–386

    CAS  Google Scholar 

  84. Zaanen J, Sawatzky GA, Allen JW. Phys Rev Lett, 1985, 55: 418–421

    CAS  PubMed  Google Scholar 

  85. Strehle B, Kleiner K, Jung R, Chesneau F, Mendez M, Gasteiger HA, Piana M. J Electrochem Soc, 2017, 164: A400–A406

    CAS  Google Scholar 

  86. Ben Yahia M, Vergnet J, Saubanère M, Doublet ML. Nat Mater, 2019, 18: 496–502

    CAS  PubMed  Google Scholar 

  87. Xu J, Lee DH, Clément RJ, Yu X, Leskes M, Pell AJ, Pintacuda G, Yang XQ, Grey CP, Meng YS. Chem Mater, 2014, 26: 1260–1269

    CAS  Google Scholar 

  88. Mariyappan S, Marchandier T, Rabuel F, Iadecola A, Rousse G, Morozov AV, Abakumov AM, Tarascon JM. Chem Mater, 2020, 32: 1657–1666

    CAS  Google Scholar 

  89. You Y, Xin S, Asl HY, Li W, Wang PF, Guo YG, Manthiram A. Chem, 2018, 4: 2124–2139

    CAS  Google Scholar 

  90. Du K, Zhu J, Hu G, Gao H, Li Y, Goodenough JB. Energy Environ Sci, 2016, 9: 2575–2577

    CAS  Google Scholar 

  91. de la Llave E, Talaie E, Levi E, Nayak PK, Dixit M, Rao PT, Hartmann P, Chesneau F, Major DT, Greenstein M, Aurbach D, Nazar LF. Chem Mater, 2016, 28: 9064–9076

    CAS  Google Scholar 

  92. Rong X, Liu J, Hu E, Liu Y, Wang Y, Wu J, Yu X, Page K, Hu YS, Yang W, Li H, Yang XQ, Chen L, Huang X. Joule, 2018, 2: 125–140

    CAS  Google Scholar 

  93. Rong X, Hu E, Lu Y, Meng F, Zhao C, Wang X, Zhang Q, Yu X, Gu L, Hu YS, Li H, Huang X, Yang XQ, Delmas C, Chen L. Joule, 2019, 3: 503–517

    CAS  Google Scholar 

  94. Kim D, Cho M, Cho K. Adv Mater, 2017, 29: 1701788

    Google Scholar 

  95. Cao X, Li X, Qiao Y, Jia M, Qiu F, He Y, He P, Zhou H. ACS Energy Lett, 2019, 4: 2409–2417

    CAS  Google Scholar 

  96. Li C, Zhao C, Hu B, Tong W, Shen M, Hu B. Chem Mater, 2020, 32: 1054–1063

    CAS  Google Scholar 

  97. Dai K, Wu J, Zhuo Z, Li Q, Sallis S, Mao J, Ai G, Sun C, Li Z, Gent WE, Chueh WC, Chuang Y, Zeng R, Shen Z, Pan F, Yan S, Piper LFJ, Hussain Z, Liu G, Yang W. Joule, 2019, 3: 518–541

    CAS  Google Scholar 

  98. Song B, Hu E, Liu J, Zhang Y, Yang XQ, Nanda J, Huq A, Page K. J Mater Chem A, 2019, 7: 1491–1498

    CAS  Google Scholar 

  99. Kim HJ, Konarov A, Jo JH, Choi JU, Ihm K, Lee HK, Kim J, Myung ST. Adv Energy Mater, 2019, 9: 1901181

    Google Scholar 

  100. Zhao C, Yao Z, Wang J, Lu Y, Bai X, Aspuru-Guzik A, Chen L, Hu YS. Chem, 2019, 5: 2913–2925

    CAS  Google Scholar 

  101. Li Y, Wang X, Gao Y, Zhang Q, Tan G, Kong Q, Bak S, Lu G, Yang XQ, Gu L, Lu J, Amine K, Wang Z, Chen L. Adv Energy Mater, 2019, 9: 1803087

    Google Scholar 

  102. Zhao C, Wang Q, Lu Y, Jiang L, Liu L, Yu X, Chen L, Li B, Hu YS. Energy Storage Mater, 2019, 20: 395–400

    Google Scholar 

  103. Konarov A, Jo JH, Choi JU, Bakenov Z, Yashiro H, Kim J, Myung ST. Nano Energy, 2019, 59: 197–206

    CAS  Google Scholar 

  104. Zheng W, Liu Q, Wang Z, Yi Z, Li Y, Cao L, Zhang K, Lu Z. J Power Sources, 2019, 439: 227086

    CAS  Google Scholar 

  105. Wang Y, Wang L, Zhu H, Chu J, Fang Y, Wu L, Huang L, Ren Y, Sun C-, Liu Q, Ai X, Yang H, Cao Y. Adv Funct Mater, 2020, 30: 1910327

    CAS  Google Scholar 

  106. Xu J, Liu H, Meng YS. Electrochem Commun, 2015, 60: 13–16

    CAS  Google Scholar 

  107. Ma LA, Massel F, Nalor AJ, Duda LC, Younesi R. Commun Chem, 2019, 2: 125

    Google Scholar 

  108. Ma C, Alvarado J, Xu J, Clément RJ, Kodur M, Tong W, Grey CP, Meng YS. J Am Chem Soc, 2017, 139: 4835–4845

    CAS  PubMed  Google Scholar 

  109. Konarov A, Kim HJ, Jo JH, Voronina N, Lee Y, Bakenov Z, Kim J, Myung ST. Adv Energy Mater, 2020, 10: 2001111

    CAS  Google Scholar 

  110. Wang H, Yang B, Liao XZ, Xu J, Yang D, He YS, Ma ZF. Electrochim Acta, 2013, 113: 200–204

    CAS  Google Scholar 

  111. Zhang Y, Wu M, Ma J, Wei G, Ling Y, Zhang R, Huang Y. ACS Cent Sci, 2020, 6: 232–240

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kong W, Gao R, Li Q, Yang W, Yang J, Sun L, Liu X. J Mater Chem A, 2019, 7: 9099–9109

    CAS  Google Scholar 

  113. Kim EJ, Ma LA, Duda LC, Pickup DM, Chadwick AV, Younesi R, Irvine JTS, Armstrong AR. ACS Appl Energy Mater, 2019, 3: 184–191

    Google Scholar 

  114. Zuo W, Ren F, Li Q, Wu X, Fang F, Yu X, Li H, Yang Y. Nano Energy, 2020, 78: 105285

    CAS  Google Scholar 

  115. Li Q, Qiao Y, Guo S, Jiang K, Li Q, Wu J, Zhou H. Joule, 2018, 2: 1134–1145

    CAS  Google Scholar 

  116. Rozier P, Sathiya M, Paulraj AR, Foix D, Desaunay T, Taberna PL, Simon P, Tarascon JM. Electrochem Commun, 2015, 53: 29–32

    CAS  Google Scholar 

  117. Mortemard de Boisse B, Liu G, Ma J, Nishimura SI, Chung SC, Kiuchi H, Harada Y, Kikkawa J, Kobayashi Y, Okubo M, Yamada A. Nat Commun, 2016, 7: 11397

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Li X, Guo S, Qiu F, Wang L, Ishida M, Zhou H. J Mater Chem A, 2019, 7: 4395–4399

    CAS  Google Scholar 

  119. Cao X, Li H, Qiao Y, Li X, Jia M, Cabana J, Zhou H. Adv Energy Mater, 2020, 10: 1903785

    CAS  Google Scholar 

  120. Jia M, Qiao Y, Li X, Jiang K, Zhou H. J Mater Chem A, 2019, 7: 20405–20413

    CAS  Google Scholar 

  121. Jia M, Qiao Y, Li X, Qiu F, Cao X, He P, Zhou H. ACS Appl Mater Interfaces, 2020, 12: 851–857

    CAS  PubMed  Google Scholar 

  122. Otoyama M, Jacquet Q, Iadecola A, Saubanère M, Rousse G, Tarascon J. Adv Energy Mater, 2019, 9: 1803674

    Google Scholar 

  123. Perez AJ, Batuk D, Saubanère M, Rousse G, Foix D, McCalla E, Berg EJ, Dugas R, H. W. van den Bos K, Doublet ML, Gonbeau D, Abakumov AM, van Tendeloo G, Tarascon JM. Chem Mater, 2016, 28: 8278–8288

    CAS  Google Scholar 

  124. Li Y, Gao Y, Wang X, Shen X, Kong Q, Yu R, Lu G, Wang Z, Chen L. Nano Energy, 2018, 47: 519–526

    CAS  Google Scholar 

  125. Susanto D, Cho MK, Ali G, Kim JY, Chang HJ, Kim HS, Nam KW, Chung KY. Chem Mater, 2019, 31: 3644–3651

    CAS  Google Scholar 

  126. Song S, Kotobuki M, Chen Y, Manzhos S, Xu C, Hu N, Lu L. Sci Rep, 2017, 7: 373

    Google Scholar 

  127. Song S, Kotobuki M, Zheng F, Xu C, Hu N, Lu L, Wang Y, Li WD. ACS Sustain Chem Eng, 2017, 5: 4785–4792

    CAS  Google Scholar 

  128. Zhang J, Su B, Kitajou A, Fujita M, Cui Y, Oda M, Zhou W, Sit PHL, Yu DYW. J Power Sources, 2018, 400: 377–382

    CAS  Google Scholar 

  129. House RA, Maitra U, Jin L, Lozano JG, Somerville JW, Rees NH, Naylor AJ, Duda LC, Massel F, Chadwick AV, Ramos S, Pickup DM, McNally DE, Lu X, Schmitt T, Roberts MR, Bruce PG. Chem Mater, 2019, 31: 3293–3300

    Google Scholar 

  130. Kong W, Yang W, Ning D, Li Q, Zheng L, Yang J, Sun K, Chen D, Liu X. Sci China Mater, 2020, 63: 1703–1718

    CAS  Google Scholar 

  131. Li B, Yan H, Zuo Y, Xia D. Chem Mater, 2017, 29: 2811–2818

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21805007, 21825102, 22075016, and 21731001), the National Key Research and Development Program of China (2018YFA0703702), the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST, 2018QNRC001), and the Fundamental Research Funds for the Central Universities (FRF-TP-20-020A3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongchang Liu or Jun Chen.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Liu, Y., Pang, X. et al. A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries. Sci. China Chem. 64, 385–402 (2021). https://doi.org/10.1007/s11426-020-9897-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9897-8

Keywords

Navigation