Skip to main content
Log in

Reveal heterogeneous motion states in single nanoparticle trajectory using its own history

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Single particle tracking (SPT) has long been utilized for investigation of complex system dynamics such as nanoparticle-cell interaction, however, the analysis of individual particle motions is always a difficult issue. Existing methods treat each data point or fragment on the recorded trajectory as an isolated “atom” and determine their relationship based on externally predefined models or physical states, which inevitably lead to oversimplification of the associated spatiotemporal complexity. Herein, inspired by the historical analysis in social science, we propose a modeless preprocessing framework for SPT analysis based on the “history” of the particle. This new strategy consists of 3 steps: (1) assign a “history” to each data point and construct successive overlapped historical vectors; (2) perform unsupervised clustering in the vector space to find their relative differences; (3) project differences back to the trajectory by coloring each point accordingly for visualization. As a result, the inner heterogeneity of the particle motion self-emerges as a colored trajectory, exhibiting a global picture of the local state transitions and providing valuable information for further model-based analysis. Since the complexity issues at various spatiotemporal scales have attracted increasing attention, and individual objects such as single molecules, cells, vehicles and even stars in the universe could all be treated as “single particles”, this presuppositionless data preprocessing approach could help the investigations of many complex systems in fundamental research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frank C, Kristian G, Bernhard M, Volpe G. Nat Mach Intell, 2020, 2: 94–103

    Article  Google Scholar 

  2. Zhang LJ, Xia L, Xie HY, Zhang ZL, Pang DW. Anal Chem, 2019, 91: 532–547

    Article  CAS  Google Scholar 

  3. Shin K, Song YH, Goh Y, Lee KT. Int J Mol Sci, 2019, 20: 16

    Google Scholar 

  4. Pan Q, He Y. Sci China Chem, 2017, 60: 1293–1304

    Article  CAS  Google Scholar 

  5. Gu Y, Sun W, Wang G, Fang N. J Am Chem Soc, 2011, 133: 5720–5723

    Article  CAS  Google Scholar 

  6. Ando J, Nakamura A, Yamamoto M, Song C, Murata K, Iino R. ACS Photon, 2019, 6: 2870–2883

    Article  CAS  Google Scholar 

  7. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN. ACS Nano, 2007, 1: 133–143

    Article  CAS  Google Scholar 

  8. Sun H, Wang Z, He Y. ACS Nano, 2019, 13: 11334–11342

    Article  CAS  Google Scholar 

  9. Chen K, Gu Y, Sun W, Bin Dong W, Wang G, Fan X, Xia T, Fang N. Nat Commun, 2017, 8: 887

    Article  Google Scholar 

  10. Metzner C, Mark C, Steinwachs J, Lautscham L, Stadler F, Fabry B. Nat Commun, 2015, 6: 7516

    Article  CAS  Google Scholar 

  11. Hansen AS, Woringer M, Grimm JB, Lavis LD, Tjian R, Darzacq X. eLife, 2018, 7: e33125

    Article  Google Scholar 

  12. Shkilev VP. Phys Rev E, 2018, 98: 032140

    Article  CAS  Google Scholar 

  13. Li H, Dou SX, Liu YR, Li W, Xie P, Wang WC, Wang PY. J Am Chem Soc, 2015, 137: 436–444

    Article  CAS  Google Scholar 

  14. Huet S, Karatekin E, Tran VS, Fanget I, Cribier S, Henry JP. BioPhys J, 2006, 91: 3542–3559

    Article  CAS  Google Scholar 

  15. Menssen R, Mani M. Biophys J, 2019, 117: 143–156

    Article  CAS  Google Scholar 

  16. Wagner T, Kroll A, Haramagatti CR, Lipinski HG, Wiemann M. PLoS ONE, 2017, 12: e0170165

    Article  Google Scholar 

  17. Helmuth JA, Burckhardt CJ, Koumoutsakos P, Greber UF, Sbalzarini IF. J Struct Biol, 2007, 159: 347–358

    Article  Google Scholar 

  18. Slator PJ, Burroughs NJ. Biophys J, 2018, 115: 1741–1754

    Article  CAS  Google Scholar 

  19. Lindén M, Elf J. Biophys J, 2018, 115: 276–282

    Article  Google Scholar 

  20. Monnier N, Barry Z, Park HY, Su KC, Katz Z, English BP, Dey A, Pan K, Cheeseman IM, Singer RH, Bathe M. Nat Methods, 2015, 12: 838–840

    Article  CAS  Google Scholar 

  21. Low-Nam ST, Lidke KA, Cutler PJ, Roovers RC, van Bergen en Henegouwen PMP, Wilson BS, Lidke DS. Nat Struct Mol Biol, 2011, 18: 1244–1249

    Article  CAS  Google Scholar 

  22. Laurent F, Floderer C, Favard C, Muriaux D, Masson JB, Vestergaard CL. Phys Biol, 2020, 17: 015003

    Article  CAS  Google Scholar 

  23. Karslake JD, Donarski ED, Shelby SA, Demey LM, DiRita VJ, Veatch SL, Biteen JS. Methods, 2020 doi: https://doi.org/10.1016/j.ymeth.2020.03.008

  24. Falcao RC, Coombs D. Phys Biol, 2020, 17: 15–39

    Article  Google Scholar 

  25. Thapa S, Lomholt MA, Krog J, Cherstvy AG, Metzler R. Phys Chem Chem Phys, 2018, 20: 29018–29037

    Article  CAS  Google Scholar 

  26. Monnier N, Guo SM, Mori M, He J, Lénárt P, Bathe M. Biophys J, 2012, 103: 616–626

    Article  CAS  Google Scholar 

  27. Granik N, Weiss LE, Nehme E, Levin M, Chein M, Perlson E, Roichman Y, Shechtman Y. Biophys J, 2019, 117: 185–192

    Article  CAS  Google Scholar 

  28. Kowalek P, Loch-Olszewska H, Szwabiński J. Phys Rev E, 2019, 100: 032410

    Article  CAS  Google Scholar 

  29. Ezer D, Whitaker K. eLife, 2019, 8: e43979

    Article  Google Scholar 

  30. Raccuglia P, Elbert KC, Adler PDF, Falk C, Wenny MB, Mollo A, Zeller M, Friedler SA, Schrier J, Norquist AJ. Nature, 2016, 533: 73–76

    Article  CAS  Google Scholar 

  31. Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL. Nat Nanotech, 2016, 11: 479–486

    Article  CAS  Google Scholar 

  32. van der Maaten L, Hinton G. J Mach Learn Res, 2008, 9: 2579–2605

    Google Scholar 

  33. Jain AK. Pattern Recogn Lett, 2010, 31: 651–666

    Article  Google Scholar 

  34. Chen Y, Hu B, Keogh E, Batista GE. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2013. 383–391

  35. Matthews BW. Biochim Biophys Acta, 1975, 405: 442–451

    Article  CAS  Google Scholar 

  36. Fraser AM, Swinney HL. Phys Rev A, 1986, 33: 1134–1140

    Article  CAS  Google Scholar 

  37. Cao L. Phys D-Nonlin Phenom, 1997, 110: 43–50

    Article  Google Scholar 

  38. Ge F, Xue J, Wang Z, Xiong B, He Y. Sci China Chem, 2019, 62: 1072–1081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21425519, 21221003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan He.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Ge, F., Zhang, S. et al. Reveal heterogeneous motion states in single nanoparticle trajectory using its own history. Sci. China Chem. 64, 302–312 (2021). https://doi.org/10.1007/s11426-020-9896-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9896-8

Navigation