Skip to main content
Log in

Visualizing phase transition of upper critical solution temperature (UCST) polymers with AIE

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The stimuli-responsive polymers with upper critical solution temperatures (UCST) are highly attractive for drug delivery applications. However, the phase transition process of UCST polymer is usually characterized by turbidity measurement and electron microscopy, which are significantly restricted by low sensitivity and static observation. In contrary, the fluorescence technique has significant advantages in terms of high sensitivity, easy operation, and dynamic observation. However, the conventional fluorophores suffer from the drawbacks of aggregation-caused quenching (ACQ) after being encapsulated by UCST polymers, which are not suitable for direct visualization of the phase transition process. To tackle this challenge, we herein developed a series of UCST polymers based on polyacrylamides decorated with bile acid and aggregation-induced emission (AIE)-active tetraphenylethene (TPE) groups, which can be used for direct fluorescence monitoring of the phase transition process. Moreover, the AIE-active UCST polymers can serve as drug carriers, which can not only monitor the drug release process under thermal stimuli, but also verify the drug release by fluorescence recovery after thermal stimuli. It is expected that the AIE-active UCST polymers with self-monitoring ability are promising for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hoffman AS. Adv Drug Deliver Rev, 2013, 65: 10–16

    Article  CAS  Google Scholar 

  2. Zhao C, Ma Z, Zhu XX. Prog Polym Sci, 2019, 90: 269–291

    Article  CAS  Google Scholar 

  3. Bordat A, Boissenot T, Nicolas J, Tsapis N. Adv Drug Deliver Rev, 2019, 138: 167–192

    Article  CAS  Google Scholar 

  4. Rapoport N. Prog Polym Sci, 2007, 32: 962–990

    Article  CAS  Google Scholar 

  5. Vanparijs N, Nuhn L, De Geest BG. Chem Soc Rev, 2017, 46: 1193–1239

    Article  CAS  Google Scholar 

  6. Strandman S, Zhu XX. Prog Polym Sci, 2015, 42: 154–176

    Article  CAS  Google Scholar 

  7. Vancoillie G, Frank D, Hoogenboom R. Prog Polym Sci, 2014, 39: 1074–1095

    Article  CAS  Google Scholar 

  8. Cai X, Zhong L, Su Y, Lin S, He X. Polym Chem, 2015, 6: 3875–3884

    Article  CAS  Google Scholar 

  9. Maji T, Banerjee S, Biswas Y, Mandal TK. Macromolecules, 2015, 48: 4957–4966

    Article  CAS  Google Scholar 

  10. Zhang G, Wang Y, Liu G. Polym Chem, 2016, 7: 6645–6654

    Article  CAS  Google Scholar 

  11. Zhu Y, Batchelor R, Lowe AB, Roth PJ. Macromolecules, 2016, 49: 672–680

    Article  CAS  Google Scholar 

  12. Seuring J, Bayer FM, Huber K, Agarwal S. Macromolecules, 2011, 45: 374–384

    Article  Google Scholar 

  13. Chen L, Yang T, Niu Y, Mu X, Gong Y, Feng Y, de Rooij NF, Wang Y, Li H, Zhou G. Chem Commun, 2020, 56: 2837–2840

    Article  CAS  Google Scholar 

  14. Seuring J, Agarwal S. Macromol Rapid Commun, 2012, 33: 1898–1920

    Article  CAS  Google Scholar 

  15. Seuring J, Agarwal S. ACS Macro Lett, 2013, 2: 597–600

    Article  CAS  Google Scholar 

  16. Chen G, Ma B, Wang Y, Xie R, Li C, Dou K, Gong S. ACS Appl Mater Interfaces, 2017, 9: 41700–41711

    Article  CAS  Google Scholar 

  17. Tian J, Huang B, Li H, Cao H, Zhang W. Biomacromolecules, 2019, 20: 2338–2349

    Article  CAS  Google Scholar 

  18. Tseng WC, Fang TY, Lin YC, Huang SJ, Huang YH. Biomacromolecules, 2018, 19: 4585–4592

    Article  CAS  Google Scholar 

  19. Zhao L, Zhang L, Zheng Z, Ling Y, Tang H. Macromol Chem Phys, 2019, 220: 1900061

    Article  Google Scholar 

  20. Zheng Z, Zhang L, Ling Y, Tang H. Eur Polym J, 2019, 115: 244–250

    Article  CAS  Google Scholar 

  21. Li W, Huang L, Ying X, Jian Y, Hong Y, Hu F, Du Y. Angew Chem Int Ed, 2015, 54: 3126–3131

    Article  CAS  Google Scholar 

  22. Deng Y, Käfer F, Chen T, Jin Q, Ji J, Agarwal S. Small, 2018, 14: 1802420

    Article  Google Scholar 

  23. Zhang Z, Li H, Kasmi S, van Herck S, Deswarte K, Lambrecht BN, Hoogenboom R, Nuhn L, De Geest BG. Angew Chem Int Ed, 2019, 58: 7866–7872

    Article  CAS  Google Scholar 

  24. Otsuka C, Wakahara Y, Okabe K, Sakata J, Okuyama M, Hayashi A, Tokuyama H, Uchiyama S. Macromolecules, 2019, 52: 7646–7660

    Article  CAS  Google Scholar 

  25. Förster T, Kasper K. Z für Physikalische Chem, 1954, 1: 275–277

    Article  Google Scholar 

  26. Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 1740–1741

  27. Gao M, Tang BZ. Coord Chem Rev, 2020, 402: 213076

    Article  CAS  Google Scholar 

  28. Guo M, Song H, Li K, Ma M, Liu Y, Fu Q, He Z. Med Res Rev, 2020, 40: 27–53

    Article  CAS  Google Scholar 

  29. Hu R, Qin A, Tang BZ. Prog Polym Sci, 2020, 100: 101176

    Article  CAS  Google Scholar 

  30. Fang X, Zhang YM, Chang K, Liu Z, Su X, Chen H, Zhang SXA, Liu Y, Wu C. Chem Mater, 2016, 28: 6628–6636

    Article  CAS  Google Scholar 

  31. Mei J, Huang Y, Tian H. ACS Appl Mater Interfaces, 2018, 10: 12217–12261

    Article  CAS  Google Scholar 

  32. Liu H, Avoce D, Song Z, Zhu XX. Macromol Rapid Commun, 2001, 22: 675–680

    Article  Google Scholar 

  33. Seuring J, Agarwal S. Macromolecules, 2012, 45: 3910–3918

    Article  CAS  Google Scholar 

  34. Jia YG, Yu Q, Ma Z, Zhang M, Zhu XX. Biomacromolecules, 2017, 18: 2663–2668

    Article  CAS  Google Scholar 

  35. Zhang D, Fan Y, Chen H, Trépout S, Li MH. Angew Chem Int Ed, 2019, 58: 10260–10265

    Article  CAS  Google Scholar 

  36. Ma H, Qi C, Cheng C, Yang Z, Cao H, Yang Z, Tong J, Yao X, Lei Z. ACS Appl Mater Interfaces, 2016, 8: 8341–8348

    Article  CAS  Google Scholar 

  37. Shao L, Li Q, Zhao C, Lu J, Li X, Chen L, Deng X, Ge G, Wu Y. Biomaterials, 2019, 194: 105–116

    Article  CAS  Google Scholar 

  38. Chen X, Li Y, Li S, Gao M, Ren L, Tang BZ. Adv Funct Mater, 2018, 28: 1804362

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21704026, 21788102, 51620105009, 21877040, U1801252, 21602063, 22075087), the Natural Science Foundation of Guangdong Province, China (2019A1515011129), the Science and Technology Program of Guangzhou (201804020060, 202007020002, 201704030069, 202002030229), Pearl River S&T Nova Program of Guangzhou (201806010152), Fundamental Research Funds for the Central Universities (2018JQ01), and Foundation for Xinghua Scholar of South China University of Technology, National Key R&D Program of China (2017YFC1103400, 2017YFC1105004, 2018YFC0311103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Gao, Li Ren or Ben Zhong Tang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, YG., Chen, KF., Gao, M. et al. Visualizing phase transition of upper critical solution temperature (UCST) polymers with AIE. Sci. China Chem. 64, 403–407 (2021). https://doi.org/10.1007/s11426-020-9893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9893-6

Navigation