Skip to main content

The mechanodonor-acceptor coupling (MDAC) approach for unidirectional multi-state fluorochromism

Abstract

Uni-directional multi-state fluorochromic scaffolds are valuable photofunctional molecules and yet scarce. We report a general approach for their design, i.e., mechanodonor-acceptor coupling (MDAC). A photochromic molecule is a mechanodonor, due to its capability to convert photonic energy into mechanical force. Upon proper coupling, it can be used to drive a mechanochromic molecule for uni-directional multi-state fluorochromism. The embodiment of this approach is a rhodamine-dithienylethylene hydride (RDH), which has been successfully employed in super-resolution localization microscopy

This is a preview of subscription content, access via your institution.

References

  1. 1

    Bamfield P. Chromic Phenomena: Technological Applications of Colour Chemistry. Cambridge: RSC, 2001

    Google Scholar 

  2. 2

    Singh A, Amiji MM. Stimuli-responsive Drug Delivery Systems. Cambridge: RSC, 2018

    Google Scholar 

  3. 3(a)

    Xi H, Zhang Z, Zhang W, Li M, Lian C, Luo Q, Tian H, Zhu WH. J Am Chem Soc, 2019, 141: 18467–18474

    CAS  PubMed  Google Scholar 

  4. 3(b)

    Uno K, Bossi ML, Irie M, Belov VN, Hell SW. J Am Chem Soc, 2019, 141: 16471–16478

    CAS  PubMed  Google Scholar 

  5. 3(c)

    Roubinet B, Weber M, Shojaei H, Bates M, Bossi ML, Belov VN, Irie M, Hell SW. J Am Chem Soc, 2017, 139: 6611–6620

    CAS  PubMed  Google Scholar 

  6. 4(a)

    Hüll K, Morstein J, Trauner D. Chem Rev, 2018, 118: 10710–10747

    PubMed  Google Scholar 

  7. 4(b)

    Fuchter MJ. J Med Chem, 2020, 63: 11436–11447

    CAS  PubMed  Google Scholar 

  8. 4(c)

    Morstein J, Dacheux MA, Norman DD, Shemet A, Donthamsetti PC, Citir M, Frank JA, Schultz C, Isacoff EY, Parrill AL, Tigyi GJ, Trauner D. J Am Chem Soc, 2020, 142: 10612–10616

    CAS  PubMed  Google Scholar 

  9. 4(d)

    Borowiak M, Küllmer F, Gegenfurtner F, Peil S, Nasufovic V, Zahler S, Thorn-Seshold O, Trauner D, Arndt HD. J Am Chem Soc, 2020, 142: 9240–9249

    CAS  PubMed  Google Scholar 

  10. 4(e)

    Cheng B, Morstein J, Ladefoged LK, Maesen JB, Schiøtt B, Sinning S, Trauner D. ACS Chem Neurosci, 2020, 11: 1231–1237

    CAS  PubMed  Google Scholar 

  11. 4(f)

    Tian T, Song Y, Wang J, Fu B, He Z, Xu X, Li A, Zhou X, Wang S, Zhou X. J Am Chem Soc, 2016, 138: 955–961

    CAS  PubMed  Google Scholar 

  12. 4(g)

    Velema WA, Szymanski W, Feringa BL. J Am Chem Soc, 2014, 136: 2178–2191

    CAS  PubMed  Google Scholar 

  13. 5(a)

    Silva APD. Molecular Logic-based Computation. Cambridge: RSC, 2012

    Google Scholar 

  14. 5(b)

    Erbas-Cakmak S, Kolemen S, Sedgwick AC, Gunnlaugsson T, James TD, Yoon J, Akkaya EU. Chem Soc Rev, 2018, 47: 2228–2248

    CAS  PubMed  Google Scholar 

  15. 6

    Feringa BL, Browne WR. Molecular Switches. Weinheim: John Wiley & Sons, 2011

    Google Scholar 

  16. 7

    Ellis GP. Chromenes. Chromanones, and Chromones. New York: John Wiley & Sons, 1977

    Google Scholar 

  17. 8(a)

    Zheng LQ, Yang S, Lan J, Gyr L, Goubert G, Qian H, Aprahamian I, Zenobi R. J Am Chem Soc, 2019, 141: 17637–17645

    CAS  PubMed  Google Scholar 

  18. 8(b)

    Shao B, Qian H, Li Q, Aprahamian I. J Am Chem Soc, 2019, 141: 8364–8371

    CAS  PubMed  Google Scholar 

  19. 9

    Yang Y, Hughes RP, Aprahamian I. J Am Chem Soc, 2014, 136: 13190–13193

    CAS  PubMed  Google Scholar 

  20. 10

    Rao YL, Chen LD, Mosey NJ, Wang S. J Am Chem Soc, 2012, 134: 11026–11034

    CAS  PubMed  Google Scholar 

  21. 11

    Bellotto S, Chen S, Rentero Rebollo I, Wegner HA, Heinis C. J Am Chem Soc, 2014, 136: 5880–5883

    CAS  PubMed  Google Scholar 

  22. 12

    Yonekawa I, Mutoh K, Kobayashi Y, Abe J. J Am Chem Soc, 2018, 140: 1091–1097

    CAS  PubMed  Google Scholar 

  23. 13

    Sajimon MC, Ramaiah D, Suresh CH, Adam W, Lewis FD, George MV. J Am Chem Soc, 2007, 129: 9439–9445

    CAS  PubMed  Google Scholar 

  24. 14

    Hammerich M, Schütt C, Stähler C, Lentes P, Röhricht F, Höppner R, Herges R. J Am Chem Soc, 2016, 138: 13111–13114

    CAS  PubMed  Google Scholar 

  25. 15

    Hemmer JR, Poelma SO, Treat N, Page ZA, Dolinski ND, Diaz YJ, Tomlinson W, Clark KD, Hooper JP, Hawker C, Read de Alaniz J. J Am Chem Soc, 2016, 138: 13960–13966

    CAS  PubMed  Google Scholar 

  26. 16

    Broman SL, Petersen MÅ, Tortzen CG, Kadziola A, Kilså K, Nielsen MB. J Am Chem Soc, 2010, 132: 9165–9174

    CAS  PubMed  Google Scholar 

  27. 17(a)

    Zweig JE, Newhouse TR. J Am Chem Soc, 2017, 139: 10956–10959

    CAS  PubMed  Google Scholar 

  28. 17(b)

    Petermayer C, Dube H. J Am Chem Soc, 2018, 140: 13558–13561

    CAS  PubMed  Google Scholar 

  29. 18

    Wei P, Zhang JX, Zhao Z, Chen Y, He X, Chen M, Gong J, Sung HHY, Williams ID, Lam JWY, Tang BZ. J Am Chem Soc, 2018, 140: 1966–1975

    CAS  PubMed  Google Scholar 

  30. 19

    Tian H, Zhang J. Photochromic Materials. Weinheim: John Wiley & Sons, 2016

    Google Scholar 

  31. 20

    Tylkowski B, Jastrzab R, Skrobanska M. Photo-sensitive complexes based on azobenzene. In: Jastrzab R, Tylkowski B, Eds. New-Generation Bioinorganic Complexes. Berlin: De Gruyter, 2016

    Google Scholar 

  32. 21

    Li J, Nagamani C, Moore JS. Acc Chem Res, 2015, 48: 2181–2190

    CAS  PubMed  Google Scholar 

  33. 22

    Mei X, Wei K, Wen G, Liu Z, Lin Z, Zhou Z, Huang L, Yang E, Ling Q. Dyes Pigments, 2016, 133: 345–353

    CAS  Google Scholar 

  34. 23

    Ko CC, Kwok WM, Yam VWW, Phillips DL. Chem Eur J, 2006, 12: 5840–5848

    CAS  PubMed  Google Scholar 

  35. 24

    Elsner C, Cordes T, Dietrich P, Zastrow M, Herzog TT, Ruck-Braun K, Zinth W. J Phys Chem A, 2009, 113: 1033–1039

    CAS  PubMed  Google Scholar 

  36. 25

    Shorunov SV, Krayushkin MM, Stoyanovich FM, Irie M. Russ J Org Chem, 2006, 42: 1490–1497

    CAS  Google Scholar 

  37. 26

    Lee S, You Y, Ohkubo K, Fukuzumi S, Nam W. Org Lett, 2012, 14: 2238–2241

    CAS  PubMed  Google Scholar 

  38. 27

    Meng X, Zhu W, Zhang Q, Feng Y, Tan W, Tian H. J Phys Chem B, 2008, 112: 15636–15645

    CAS  PubMed  Google Scholar 

  39. 28

    Peng S, Sun R, Wang W, Chen C. Angew Chem Int Ed, 2017, 56: 6882–6885

    CAS  Google Scholar 

  40. 29(a)

    Luo X, Qian L, Xiao Y, Tang Y, Zhao Y, Wang X, Gu L, Lei Z, Bao J, Wu J, He T, Hu F, Zheng J, Li H, Zhu W, Shao L, Dong X, Chen D, Qian X, Yang Y. Nat Commun, 2019, 10: 258

    PubMed  PubMed Central  Google Scholar 

  41. 29(b)

    Grimm JB, Brown TA, Tkachuk AN, Lavis LD. ACS Cent Sci, 2017, 3: 975–985

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 29(c)

    Fischer C, Sparr C. Angew Chem Int Ed, 2018, 57: 2436–2440

    CAS  Google Scholar 

  43. 30

    de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE. Chem Rev, 1997, 97: 1515–1566

    CAS  PubMed  Google Scholar 

  44. 31

    Fukumoto S, Nakashima T, Kawai T. Angew Chem Int Ed, 2011, 50: 1565–1568

    CAS  Google Scholar 

  45. 32

    Erko FG, Berthet J, Patra A, Guillot R, Nakatani K, Métivier R, Delbaere S. Eur J Org Chem, 2013, 2013: 7809–7814

    CAS  Google Scholar 

  46. 33(a)

    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF. Science, 2006, 313: 1642–1645

    CAS  PubMed  Google Scholar 

  47. 33(b)

    Rust MJ, Bates M, Zhuang X. Nat Methods, 2006, 3: 793–796

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21822805, 21922704, 21877069, 21908065, 22078098), China Postdoctoral Science Foundation (2019M651427, 2020T130197) and the Commission of Science and Technology of Shanghai Municipality (18430711000).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiao Luo, Chunlai Chen or Youjun Yang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Zhang, L., Luo, X. et al. The mechanodonor-acceptor coupling (MDAC) approach for unidirectional multi-state fluorochromism. Sci. China Chem. 64, 253–262 (2021). https://doi.org/10.1007/s11426-020-9874-6

Download citation

  • mechanodonor-acceptor coupling
  • fluorochromism
  • diarylethene-rhodamine hybrid
  • single-molecule imaging