Skip to main content

Designed fabrication of mesoporous silica-templated self-assembled theranostic nanomedicines

Abstract

Theranostic nanosystems that integrate diagnosis and therapy have garnered increasing attention for personalized medicine. The integration of the versatile nanoparticles to fabricate self-assembled theranostic nanomedicines becomes increasingly important in current medical research. Mesoporous silica nanoparticles (MSN) with their highly attractive physicochemical properties and favorable morphological attributes represent ideal templates for the controlled assembly and integration of functional nanomaterials to fabricate self-assembled theranostic nanomedicines The rationally designed combination strategy and heterostructure will improve the overall bioavailability and preserve the unique property of each nanocomponent. In this review, the cutting-edge strategies for the designed fabrication of MSN-templated self-assembled nanomedicines are summarized. We categorize MSN-based nanomedicines by their unique heterostructures, including core-shell, yolk-shell, core-satellite, heterodimer and core-shell-satellite structures, and discuss the controlled assembly approaches as well as the intriguing applications for disease theranostics. Finally, a perspective on the challenges in the clinical translation of self-assembled theranostic nanomedicines is highlighted.

This is a preview of subscription content, access via your institution.

References

  1. Soares S, Sousa J, Pais A, Vitorino C. Front Chem, 2018, 6: 360

    PubMed  PubMed Central  Google Scholar 

  2. Kim BYS, Rutka JT, Chan WCW. N Engl J Med, 2010, 363: 2434–2443

    CAS  PubMed  Google Scholar 

  3. Lin G, Mi P, Chu C, Zhang J, Liu G. Adv Sci, 2016, 3: 1600134

    Google Scholar 

  4. Barenholz YC. J Control Release, 2012, 160: 117–134

    CAS  PubMed  Google Scholar 

  5. Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Chem Rev, 2015, 115: 10637–10689

    CAS  PubMed  Google Scholar 

  6. Wong XY, Sena-Torralba A, Álvarez-Diduk R, Muthoosamy K, Merkoçi A. ACS Nano, 2020, 14: 2585–2627

    CAS  PubMed  Google Scholar 

  7. Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Chem Rev, 2015, 115: 327–394

    CAS  PubMed  Google Scholar 

  8. Choi KY, Liu G, Lee S, Chen X. Nanoscale, 2012, 4: 330–342

    CAS  PubMed  Google Scholar 

  9. Kim H, Kwak G, Kim K, Yoon HY, Kwon IC. Biomaterials, 2019, 213: 119207

    CAS  PubMed  Google Scholar 

  10. Xie J, Lee S, Chen X. Adv Drug Deliver Rev, 2010, 62: 1064–1079

    CAS  Google Scholar 

  11. Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J. Chem Mater, 2001, 13: 308–311

    CAS  Google Scholar 

  12. Yang B, Chen Y, Shi J. Mater Sci Eng-R-Rep, 2019, 137: 66–105

    Google Scholar 

  13. Tang F, Li L, Chen D. Adv Mater, 2012, 24: 1504–1534

    CAS  PubMed  Google Scholar 

  14. Liang J, Liang Z, Zou R, Zhao Y. Adv Mater, 2017, 29: 1701139

    Google Scholar 

  15. Zheng H, Gao F, Valtchev V. J Mater Chem A, 2016, 4: 16756–16770

    CAS  Google Scholar 

  16. Parra-Nieto J, del Cid MAG, Cárcer IA, Baeza A. Biotechnol J, 2020, 2000150

  17. Chen W, Glackin CA, Horwitz MA, Zink JI. Acc Chem Res, 2019, 52: 1531–1542

    CAS  PubMed  Google Scholar 

  18. Garcia-Bennett AE. Nanomedicine, 2011, 6: 867–877

    CAS  PubMed  Google Scholar 

  19. Manzano M, Vallet-Regí M. Adv Funct Mater, 2020, 30: 1902634

    CAS  Google Scholar 

  20. Kankala RK, Han Y-, Na J, Lee C-, Sun Z, Wang S-, Kimura T, Ok YS, Yamauchi Y, Chen A-, Wu KC-. Adv Mater, 2020, 32: 1907035

    CAS  Google Scholar 

  21. Lei Q, Guo J, Noureddine A, Wang A, Wuttke S, Brinker CJ, Zhu W. Adv Funct Mater, 2020, 30: 1909539

    CAS  Google Scholar 

  22. Cheng YJ, Hu JJ, Qin SY, Zhang AQ, Zhang XZ. Biomaterials, 2020, 232: 119738

    CAS  PubMed  Google Scholar 

  23. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Chem Soc Rev, 2012, 41: 2590–2605

    CAS  PubMed  Google Scholar 

  24. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Nature, 1992, 359: 710–712

    CAS  Google Scholar 

  25. Wu SH, Mou CY, Lin HP. Chem Soc Rev, 2013, 42: 3862–3875

    CAS  PubMed  Google Scholar 

  26. Wan Y, Zhao Y. Chem Rev, 2007, 107: 2821–2860

    CAS  PubMed  Google Scholar 

  27. Lee JE, Lee N, Kim T, Kim J, Hyeon T. Acc Chem Res, 2011, 44: 893–902

    CAS  PubMed  Google Scholar 

  28. Slowing I, Trewyn BG, Lin VSY. J Am Chem Soc, 2006, 128: 14792–14793

    CAS  PubMed  Google Scholar 

  29. Li Z, Yu L, Yang T, Chen Y. Sci China Chem, 2018, 61: 1243–1260

    CAS  Google Scholar 

  30. Kim D, Shin K, Kwon SG, Hyeon T. Adv Mater, 2018, 30: 1802309

    Google Scholar 

  31. Lin YS, Haynes CL. J Am Chem Soc, 2010, 132: 4834–4842

    CAS  PubMed  Google Scholar 

  32. Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U. Nano Lett, 2005, 5: 113–117

    CAS  PubMed  Google Scholar 

  33. Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin CH, Park JG, Kim J, Hyeon T. J Am Chem Soc, 2006, 128: 688–689

    CAS  PubMed  Google Scholar 

  34. Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán LM. Adv. Mater., 2010, 22(11): 1182–1195, doi: https://doi.org/10.1002/adma.200901263

    PubMed  Google Scholar 

  35. Liu J, Liu T, Pan J, Liu S, Lu GQM. Annu Rev Chem Biomol Eng, 2018, 9: 389–411

    CAS  PubMed  Google Scholar 

  36. Kim J, Kim H, Lee N, Kim T, Kim H, Yu T, Song I, Moon W, Hyeon T. Angew Chem Int Ed, 2008, 47: 8438–8441

    CAS  Google Scholar 

  37. Xu C, Chen F, Valdovinos HF, Jiang D, Goel S, Yu B, Sun H, Barnhart TE, Moon JJ, Cai W. Biomaterials, 2018, 165: 56–65

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C. Adv Mater, 2012, 24: 1418–1423

    CAS  PubMed  Google Scholar 

  39. Liu JN, Bu WB, Shi JL. Acc Chem Res, 2015, 48: 1797–1805

    CAS  PubMed  Google Scholar 

  40. Lai J, Shah BP, Zhang Y, Yang L, Lee KB. ACS Nano, 2015, 9: 5234–5245

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu J, Wang C, Wang X, Wang X, Cheng L, Li Y, Liu Z. Adv Funct Mater, 2015, 25: 384–392

    CAS  Google Scholar 

  42. Liu J, Bu W, Pan L, Shi J. Angew Chem Int Ed, 2013, 52: 4375–4379

    CAS  Google Scholar 

  43. Lin LS, Song J, Song L, Ke K, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, Niu G, Yang HH, Chen X. Angew Chem Int Ed, 2018, 57: 4902–4906

    CAS  Google Scholar 

  44. Liu J, Li F, Wang Y, Pan L, Lin P, Zhang B, Zheng Y, Xu Y, Liao H, Ko G, Fei F, Xu C, Du Y, Shin K, Kim D, Jang SS, Chung HJ, Tian H, Wang Q, Guo W, Nam JM, Chen Z, Hyeon T, Ling D. Nat Nanotechnol, 2020, 15: 321–330

    CAS  PubMed  Google Scholar 

  45. Liu J, Qiao S, Budi Hartono S, Lu G. Angew Chem Int Ed, 2010, 49: 4981–4985

    CAS  Google Scholar 

  46. Li C, Zhang Y, Li Z, Mei E, Lin J, Li F, Chen C, Qing X, Hou L, Xiong L, Hao H, Yang Y, Huang P. Adv Mater, 2018, 30: 1706150

    Google Scholar 

  47. Zhang Q, Zhang T, Ge J, Yin Y. Nano Lett, 2008, 8: 2867–2871

    CAS  PubMed  Google Scholar 

  48. Fan W, Shen B, Bu W, Chen F, He Q, Zhao K, Zhang S, Zhou L, Peng W, Xiao Q, Ni D, Liu J, Shi J. Biomaterials, 2014, 35: 8992–9002

    CAS  PubMed  Google Scholar 

  49. Liu J, Qiao SZ, Chen JS, (David) Lou XW, Xing X, (Max) Lu GQ. Chem Commun, 2011, 47: 12578–12591

    CAS  Google Scholar 

  50. Lee JE, Lee N, Kim H, Kim J, Choi SH, Kim JH, Kim T, Song IC, Park SP, Moon WK, Hyeon T. J Am Chem Soc, 2010, 132: 552–557

    CAS  PubMed  Google Scholar 

  51. Chen Q, Du Y, Zhang K, Liang Z, Li J, Yu H, Ren R, Feng J, Jin Z, Li F, Sun J, Zhou M, He Q, Sun X, Zhang H, Tian M, Ling D. ACS Nano, 2018, 12: 1321–1338

    CAS  PubMed  Google Scholar 

  52. Lei Q, Wang SB, Hu JJ, Lin YX, Zhu CH, Rong L, Zhang XZ. ACS Nano, 2017, 11: 7201–7214

    CAS  PubMed  Google Scholar 

  53. Wu L, Wu M, Zeng Y, Zhang D, Zheng A, Liu X, Liu J. Nanotechnology, 2014, 26: 025102

    PubMed  Google Scholar 

  54. Liu R, Zhang Y, Zhao X, Agarwal A, Mueller LJ, Feng P. J Am Chem Soc, 2010, 132: 1500–1501

    CAS  PubMed  Google Scholar 

  55. Giri S, Trewyn BG, Stellmaker MP, Lin VSY. Angew Chem Int Ed, 2005, 44: 5038–5044

    CAS  Google Scholar 

  56. Kim J, Kim HY, Song SY, Go S, Sohn HS, Baik S, Soh M, Kim K, Kim D, Kim HC, Lee N, Kim BS, Hyeon T. ACS Nano, 2019, 13: 3206–3217

    CAS  PubMed  Google Scholar 

  57. Wu H, Li F, Wang S, Lu J, Li J, Du Y, Sun X, Chen X, Gao J, Ling D. Biomaterials, 2018, 151: 66–77

    CAS  PubMed  Google Scholar 

  58. Walther A, Müller AHE. Chem Rev, 2013, 113: 5194–5261

    CAS  PubMed  Google Scholar 

  59. Li X, Zhou L, Wei Y, El-Toni AM, Zhang F, Zhao D. J Am Chem Soc, 2014, 136: 15086–15092

    CAS  PubMed  Google Scholar 

  60. Kwon SG, Krylova G, Phillips PJ, Klie RF, Chattopadhyay S, Shibata T, Bunel EE, Liu Y, Prakapenka VB, Lee B, Shevchenko EV. Nat Mater, 2015, 14: 215–223

    CAS  PubMed  Google Scholar 

  61. Wang Z, Shao D, Chang Z, Lu M, Wang Y, Yue J, Yang D, Li M, Xu Q, Dong W. ACS Nano, 2017, 11: 12732–12741

    CAS  PubMed  Google Scholar 

  62. Wang Z, Zhang F, Shao D, Chang Z, Wang L, Hu H, Zheng X, Li X, Chen F, Tu Z, Li M, Sun W, Chen L, Dong W-. Adv Sci, 2019, 6

  63. Yang G, Lv R, He F, Qu F, Gai S, Du S, Wei Z, Yang P. Nanoscale, 2015, 7: 13747–13758

    CAS  PubMed  Google Scholar 

  64. Zhang Z, Liu C, Bai J, Wu C, Xiao Y, Li Y, Zheng J, Yang R, Tan W. ACS Appl Mater Interfaces, 2015, 7: 6211–6219

    CAS  PubMed  Google Scholar 

  65. Mekaru H, Lu J, Tamanoi F. Adv Drug Deliver Rev, 2015, 95: 40–49

    CAS  Google Scholar 

  66. Gao M, Zeng J, Liang K, Zhao D, Kong B. Adv Funct Mater, 2020, 30: 1906950

    CAS  Google Scholar 

  67. Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Chem Soc Rev, 2014, 43: 4243–4268

    CAS  PubMed  Google Scholar 

  68. Liu J, Liu Y, Bu W, Bu J, Sun Y, Du J, Shi J. J Am Chem Soc, 2014, 136: 9701–9709

    CAS  PubMed  Google Scholar 

  69. Wang J, Ma Q, Wang Y, Li Z, Li Z, Yuan Q. Chem Soc Rev, 2018, 47: 8766–8803

    CAS  PubMed  Google Scholar 

  70. Zou C, Foda MF, Tan X, Shao K, Wu L, Lu Z, Bahlol HS, Han H. Anal Chem, 2016, 88: 7395–7403

    CAS  PubMed  Google Scholar 

  71. Cheng Y, Jiao X, Fan W, Yang Z, Wen Y, Chen X. Biomaterials, 2020, 256: 120191

    CAS  PubMed  Google Scholar 

  72. Ni D, Bu W, Ehlerding EB, Cai W, Shi J. Chem Soc Rev, 2017, 46: 7438–7468

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Zheng K, Song S, Fan D, Zhang H, Liu X. Chem Soc Rev, 2018, 47: 6473–6485

    CAS  PubMed  Google Scholar 

  74. Liu J, Bu J, Bu W, Zhang S, Pan L, Fan W, Chen F, Zhou L, Peng W, Zhao K, Du J, Shi J. Angew Chem Int Ed, 2014, 53: 4551–4555

    CAS  Google Scholar 

  75. Shokeen M, Anderson CJ. Acc Chem Res, 2009, 42: 832–841

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Goel S, Ferreira CA, Chen F, Ellison PA, Siamof CM, Barnhart TE, Cai W. Adv Mater, 2018, 30: 1704367

    Google Scholar 

  77. Lv R, Yang P, He F, Gai S, Li C, Dai Y, Yang G, Lin J. ACS Nano, 2015, 9: 1630–1647

    CAS  PubMed  Google Scholar 

  78. Wang Z, Chang Z, Lu M, Shao D, Yue J, Yang D, Zheng X, Li M, He K, Zhang M, Chen L, Dong W. Biomaterials, 2018, 154: 147–157

    CAS  PubMed  Google Scholar 

  79. Shao D, Li M, Wang Z, Zheng X, Lao YH, Chang Z, Zhang F, Lu M, Yue J, Hu H, Yan H, Chen L, Dong W, Leong KW. Adv Mater, 2018, 30: 1801198

    Google Scholar 

  80. Yao X, Niu X, Ma K, Huang P, Grothe J, Kaskel S, Zhu Y. Small, 2017, 13: 1602225

    Google Scholar 

  81. Zhao T, Chen L, Li Q, Li X. J Mater Chem B, 2018, 6: 7112–7121

    CAS  PubMed  Google Scholar 

  82. Chen W, Cheng CA, Zink JI. ACS Nano, 2019, 13: acsnano.8b06655

    Google Scholar 

  83. Lee C, Hwang HS, Lee S, Kim B, Kim JO, Oh KT, Lee ES, Choi HG, Youn YS. Adv Mater, 2017, 29: 1605563

    Google Scholar 

  84. Wu W, Yu L, Jiang Q, Huo M, Lin H, Wang L, Chen Y, Shi J. J Am Chem Soc, 2019, 141: 11531–11539

    CAS  PubMed  Google Scholar 

  85. Du Y, Yang C, Li F, Liao H, Chen Z, Lin P, Wang N, Zhou Y, Lee JY, Ding Q, Ling D. Small, 2020, 16: 2002537

    CAS  Google Scholar 

  86. Mellman I, Coukos G, Dranoff G. Nature, 2011, 480: 480–489

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Singha S, Shao K, Ellestad KK, Yang Y, Santamaria P. ACS Nano, 2018, 12: 10621–10635

    CAS  PubMed  Google Scholar 

  88. Ding B, Shao S, Yu C, Teng B, Wang M, Cheng Z, Wong K-, Ma P, Lin J. Adv Mater, 2018, 30: 1802479

    Google Scholar 

  89. Müller LK, Simon J, Rosenauer C, Mailänder V, Morsbach S, Landfester K. Biomacromolecules, 2018, 19: 374–385

    PubMed  Google Scholar 

  90. Chen Y, Chen H, Shi J. Adv Mater, 2013, 25: 3144–3176

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was support by the National Key Research and Development Program of China (2016YFA0203600), the National Natural Science Foundation of China (31822019, 32071374, 51703195, 91859116), the One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province (2019C04024), the Zhejiang Provincial Natural Science Foundation of China (LGF19C100002), the National Science & Technology Major Project ‘Key New Drug Creation and Manufacturing Program’, China (2018ZX09711002), and the Fundamental Research Funds for the Central Universities (2019XZZX004-15, 2020FZZX001-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daishun Ling.

Additional information

Conflict of interest

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Chen, Z., Lee, J.Y. et al. Designed fabrication of mesoporous silica-templated self-assembled theranostic nanomedicines. Sci. China Chem. 64, 204–217 (2021). https://doi.org/10.1007/s11426-020-9869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9869-4

  • self-assembly
  • theranostics
  • heterostructure
  • mesoporous silica
  • nanomedicines