Skip to main content
Log in

Engineering of dendritic dopant-free hole transport molecules: enabling ultrahigh fill factor in perovskite solar cells with optimized dendron construction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Developing dopant-free hole-transporting materials (HTMs) for high-performance perovskite solar cells (PVSCs) has been a very active research topic in recent years since HTMs play a critical role in optimizing interfacial charge carrier kinetics and in turn determining device performance. Here, a novel dendritic engineering strategy is first utilized to design HTMs with a D-A type molecular framework, and diphenylamine and/or carbazole is selected as the building block for constructing dendrons. All HTMs show good thermal stability and excellent film morphology, and the key optoelectronic properties could be fine-tuned by varying the dendron structure. Among them, MPA-Cz-BTI and MCz-Cz-BTI exhibit an improved interfacial contact with the perovskite active layer, and non-radiative recombination loss and charge transport loss can be effectively suppressed. Consequently, high power conversion efficiencies (PCEs) of 20.8% and 21.35% are achieved for MPA-Cz-BTI and MCz-Cz-BTI based devices, respectively, accompanied by excellent long-term storage stability. More encouragingly, ultrahigh fill factors of 85.2% and 83.5% are recorded for both devices, which are among the highest values reported to date. This work demonstrates the great potential of dendritic materials as a new type of dopant-free HTMs for high-performance PVSCs with excellent FF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jena AK, Kulkarni A, Miyasaka T. Chem Rev, 2019, 119: 3036–3103

    CAS  PubMed  Google Scholar 

  2. Fan R, Huang Y, Wang L, Li L, Zheng G, Zhou H. Adv Energy Mater, 2016, 6: 1600460

    Google Scholar 

  3. National Renewable Energy Laboratory. Best research-cell efficiencies chart, https://www.nrel.gov/pv/ (Accessed on August 2019)

  4. Yu D, Hu Y, Shi J, Tang H, Zhang W, Meng Q, Han H, Ning Z, Tian H. Sci China Chem, 2019, 62: 684–707

    CAS  Google Scholar 

  5. Wang Y, Han L. Sci China Chem, 2019, 62: 822–828

    CAS  Google Scholar 

  6. Jeon NJ, Na H, Jung EH, Yang TY, Lee YG, Kim G, Shin HW, Il Seok S, Lee J, Seo J. Nat Energy, 2018, 3: 682–689

    CAS  Google Scholar 

  7. Green MA. Sol Cells, 1982, 7: 337–340

    CAS  Google Scholar 

  8. Jung EH, Jeon NJ, Park EY, Moon, CS, Shin TJ, Yang TY, Noh JH, Seo J. Nature, 2019, 567: 511–515

    CAS  PubMed  Google Scholar 

  9. Hou Y, Du X, Scheiner S, McMeekin DP, Wang Z, Li N, Killian MS, Chen H, Richter M, Levchuk I, Schrenker N, Spiecker E, Stubhan T, Luechinger NA, Hirsch A, Schmuki P, Steinrück HP, Fink RH, Halik M, Snaith HJ, Brabec CJ. Science, 2017, 358: 1192–1197

    CAS  PubMed  Google Scholar 

  10. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Nat Photonics, 2019, 13: 460–466

    CAS  Google Scholar 

  11. Stolterfoht M, Wolff CM, Márquez JA, Zhang S, Hages CJ, Rothhardt D, Albrecht S, Burn PL, Meredith P, Unold T, Neher D. Nat Energy, 2018, 3: 847–854

    CAS  Google Scholar 

  12. Luo D, Su R, Zhang W, Gong Q, Zhu R. Nat Rev Mater, 2019, 5: 44–60

    Google Scholar 

  13. Rodríguez-Seco C, Cabau L, Vidal-Ferran A, Palomares E. Acc Chem Res, 2018, 51: 869–880

    PubMed  Google Scholar 

  14. Schloemer TH, Christians JA, Luther JM, Sellinger A. Chem Sci, 2019, 10: 1904–1935

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei Q, Ning Z. Sci China Chem, 2019, 62: 5–6

    CAS  Google Scholar 

  16. Pham HD, Yang TCJ, Jain SM, Wilson GJ, Sonar P. Adv Energy Mater, 2020, 10: 1903326

    CAS  Google Scholar 

  17. Tu B, Wang Y, Chen W, Liu B, Feng X, Zhu Y, Yang K, Zhang Z, Shi Y, Guo X, Li HF, Tang Z, Djurišić AB, He Z. ACS Appl Mater Interfaces, 2019, 11: 48556–48563

    CAS  PubMed  Google Scholar 

  18. Rakstys K, Igci C, Nazeeruddin MK. Chem Sci, 2019, 10: 6748–6769

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Chen W, Wang L, Tu B, Chen T, Liu B, Yang K, Koh CW, Zhang X, Sun H, Chen G, Feng X, Woo HY, Djurišić AB, He Z, Guo X. Adv Mater, 2019, 31: 1902781

    Google Scholar 

  20. Yin X, Zhou J, Song Z, Dong Z, Bao Q, Shrestha N, Bista SS, Ellingson RJ, Yan Y, Tang W. Adv Funct Mater, 2019, 29: 1904300

    Google Scholar 

  21. Zhou W, Wen Z, Gao P. Adv Energy Mater, 2018, 8: 1702512

    Google Scholar 

  22. Xiao Q, Tian J, Xue Q, Wang J, Xiong B, Han M, Li Z, Zhu Z, Yip HL, Li Z. Angew Chem Int Ed, 2019, 58: 17724–17730

    CAS  Google Scholar 

  23. Zhang F, Yao Z, Guo Y, Li Y, Bergstrand J, Brett CJ, Cai B, Hajian A, Guo Y, Yang X, Gardner JM, Widengren J, Roth SV, Kloo L, Sun L. J Am Chem Soc, 2019, 141: 19700–19707

    CAS  PubMed  Google Scholar 

  24. Walter MV, Malkoch M. Chem Soc Rev, 2012, 41: 4593–4609

    CAS  PubMed  Google Scholar 

  25. Qin T, Ding J, Wang L, Baumgarten M, Zhou G, Mullen K. J Am Chem Soc, 2009, 131: 14329–14336

    CAS  PubMed  Google Scholar 

  26. Wang Y, Lu Y, Gao B, Wang S, Ding J, Wang L, Jing X, Wang F. ACS Appl Mater Interfaces, 2016, 8: 29600–29607

    CAS  PubMed  Google Scholar 

  27. Ullah M, Tandy K, Clulow AJ, Burn PL, Gentle IR, Meredith P, Lo SC, Namdas EB. ACS Photonics, 2017, 4: 754–760

    CAS  Google Scholar 

  28. Thongkasee P, Thangthong A, Janthasing N, Sudyoadsuk T, Namuangruk S, Keawin T, Jungsuttiwong S, Promarak V. ACS Appl Mater Interfaces, 2014, 6: 8212–8222

    CAS  PubMed  Google Scholar 

  29. Yu W, Zhang J, Tu D, Yang Q, Wang X, Liu X, Cheng F, Qiao Y, Li G, Guo X, Li C. Sol RRL, 2020, 4: 1900367

    CAS  Google Scholar 

  30. Wang Y, Wang S, Ding J, Wang L, Jing X, Wang F. Chem Commun, 2017, 53: 180–183

    CAS  Google Scholar 

  31. Wang X, Zhang J, Yu S, Yu W, Fu P, Liu X, Tu D, Guo X, Li C. Angew Chem Int Ed, 2018, 57: 12529–12533

    CAS  Google Scholar 

  32. Freeman AW, Koene SC, Malenfant PRL, Thompson ME, Fréchet JMJ. J Am Chem Soc, 2000, 122: 12385–12386

    CAS  Google Scholar 

  33. Zhang J, Sun Q, Chen Q, Wang Y, Zhou Y, Song B, Jia X, Zhu Y, Zhang S, Yuan N, Ding J, Li Y. Sol RRL, 2019, 4: 1900421

    Google Scholar 

  34. Wu CG, Chiang CH, Tseng ZL, Nazeeruddin MK, Hagfeldt A, Grätzel M. Energy Environ Sci, 2015, 8: 2725–2733

    CAS  Google Scholar 

  35. Wang K, Liu C, Du P, Zheng J, Gong X. Energy Environ Sci, 2015, 8: 1245–1255

    CAS  Google Scholar 

  36. Chiang CH, Wu CG. ACS Nano, 2018, 12: 10355–10364

    CAS  PubMed  Google Scholar 

  37. Urbach F. Phys Rev, 1953, 92: 1324

    CAS  Google Scholar 

  38. De Wolf S, Holovsky J, Moon SJ, Löper P, Niesen B, Ledinsky M, Haug FJ, Yum JH, Ballif C. J Phys Chem Lett, 2014, 5: 1035–1039

    CAS  PubMed  Google Scholar 

  39. Akin S, Arora N, Zakeeruddin SM, Grätzel M, Friend RH, Dar MI. Adv Energy Mater, 2020, 10: 1903090

    CAS  Google Scholar 

  40. Lin Y, Shen L, Dai J, Deng Y, Wu Y, Bai Y, Zheng X, Wang J, Fang Y, Wei H, Ma W, Zeng XC, Zhan X, Huang J. Adv Mater, 2017, 29: 1604545

    Google Scholar 

  41. Wu T, Wang Y, Dai Z, Cui D, Wang T, Meng X, Bi E, Yang X, Han L. Adv Mater, 2019, 31: 1900605

    Google Scholar 

  42. Chen W, Li K, Wang Y, Feng X, Liao Z, Su Q, Lin X, He Z. J Phys Chem Lett, 2017, 8: 591–598

    CAS  PubMed  Google Scholar 

  43. Wang S, Chen H, Zhang J, Xu G, Chen W, Xue R, Zhang M, Li Y, Li Y. Adv Mater, 2019, 31: 1903691

    CAS  Google Scholar 

  44. Chen W, Zhou Y, Chen G, Wu Y, Tu B, Liu FZ, Huang L, Ng AMC, Djurišić AB, He Z. Adv Energy Mater, 2019, 9: 1803872

    Google Scholar 

  45. Yang S, Chen S, Mosconi E, Fang Y, Xiao X, Wang C, Zhou Y, Yu Z, Zhao J, Gao Y, De Angelis F, Huang J. Science, 2019, 365: 473–478

    CAS  Google Scholar 

  46. Troughton J, Neophytou M, Gasparini N, Seitkhan A, Isikgor FH, Song X, Lin YH, Liu T, Faber H, Yengel E, Kosco J, Oszajca MF, Hartmeier B, Rossier M, Lüchinger NA, Tsetseris L, Snaith HJ, De Wolf S, Anthopoulos TD, McCulloch I, Baran D. Energy Environ Sci, 2020, 13: 268–276

    CAS  Google Scholar 

  47. Zhang J, Wu S, Liu T, Zhu Z, Jen AK. Adv Funct Mater, 2019, 29: 1808833

    CAS  Google Scholar 

  48. Zhang J, Sun Q, Chen Q, Wang Y, Zhou Y, Song B, Yuan N, Ding J, Li Y. Adv Funct Mater, 2019, 29: 1900484

    Google Scholar 

  49. Chen Y, Xu X, Cai N, Qian S, Luo R, Huo Y, Tsang SW. Adv Energy Mater, 2019, 9: 1901268

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21805128, 21774055, 61775091), Shenzhen Key Laboratory Project (ZDSYS201602261933302), Shenzhen Innovation Committee (JCYJ20180504165851864), Shenzhen Innovation Committee (JCYJ20170818141216288), and the Seed Funding for Strategic Interdisciplinary Research Scheme of the University of Hong Kong. We are grateful to the assistance of SUSTech Core Research Facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Wang, Xugang Guo or Zhubing He.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

11426_2020_9857_MOESM1_ESM.pdf

Engineering of dendritic dopant-free hole transport molecules: enabling ultrahigh fill factor in perovskite solar cells with optimized dendron construction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, Y., Liu, B. et al. Engineering of dendritic dopant-free hole transport molecules: enabling ultrahigh fill factor in perovskite solar cells with optimized dendron construction. Sci. China Chem. 64, 41–51 (2021). https://doi.org/10.1007/s11426-020-9857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9857-1

Keywords

Navigation