Skip to main content
Log in

Tuning the intermolecular interaction of A2-A1-D-A1-A2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh VOC of ~1.2 V

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

For non-fullerene acceptors (NFAs) with linear A2-A1-D-A1-A2 backbone, there are three kinds of possible intermolecular interaction, A1-A1, A1-A2 and A2-A2 stacking. Hence, it is a huge challenge to control this interaction and investigate the effect of intermolecular stacking model on the photovoltaic performance. Here, we adopt a feasible strategy, by utilizing different substituent groups on terminal A2 unit of dicyanomethylene rhodanine (RCN), to modulate this stacking model. According to theoretical calculation results, the molecule BTA3 with ethyl substituent packs via heterogeneous interaction between A2 and A1 unit in neighboring molecules. Surprisingly, the benzyl group can effectively transform the aggregation of BTA5 into homogeneous packing of A2-A2 model, which might be driven by the strong interaction between benzyl and A1 (benzotriazole) unit. However, different with benzyl, phenyl end group impedes the intermolecular interaction of BTA4 due to the large steric hindrance. When using a BTA-based D-π-A polymer J52-F as donor according to “Same-A-Strategy”, BTA3-5 could achieve ultrahigh open-circuit voltage (VOC) of 1.17–1.21 V. Finally, BTA5 with benzyl groups realized an improved power conversion efficiency (PCE) of 11.27%, obviously higher than that of BTA3 (PCE=9.04%) and BTA4 (PCE=5.61%). It is also worth noting that the same trend can be found when using other four classic p-type polymers of P3HT, PTB7, PTB7-Th and PBDB-T. This work not only investigates the intermolecular interaction of A2-A1-D-A1-A2 type NFAs for the first time, but also provides a straightforward and universal method to change the interaction model and improve the photovoltaic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  2. Dou L, You J, Hong Z, Xu Z, Li G, Street RA, Yang Y. Adv Mater, 2013, 25: 6642–6671

    Article  CAS  Google Scholar 

  3. Fan Q, Su W, Chen S, Kim W, Chen X, Lee B, Liu T, Méndez-Romero UA, Ma R, Yang T, Zhuang W, Li Y, Li Y, Kim TS, Hou L, Yang C, Yan H, Yu D, Wang E. Joule, 2020, 4: 658–672

    Article  CAS  Google Scholar 

  4. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  5. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    Article  CAS  Google Scholar 

  6. Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872

    Article  Google Scholar 

  7. Jiang K, Wei Q, Lai JYL, Peng Z, Kim HK, Yuan J, Ye L, Ade H, Zou Y, Yan H. Joule, 2019, 3: 3020–3033

    Article  CAS  Google Scholar 

  8. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027

    Article  CAS  Google Scholar 

  9. Yu R, Yao H, Hong L, Xu Y, Gao B, Zhu J, Zu Y, Hou J. Adv Energy Mater, 2018, 8: 1802131

    Article  Google Scholar 

  10. Han G, Guo Y, Song X, Wang Y, Yi Y. J Mater Chem C, 2017, 5: 4852–4857

    Article  CAS  Google Scholar 

  11. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Article  CAS  Google Scholar 

  12. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  Google Scholar 

  13. Shen F, Xu J, Li X, Zhan C. J Mater Chem A, 2018, 6: 15433–15455

    Article  CAS  Google Scholar 

  14. Qin Y, Uddin MA, Chen Y, Jang B, Zhao K, Zheng Z, Yu R, Shin TJ, Woo HY, Hou J. Adv Mater, 2016, 28: 9416–9422

    Article  CAS  Google Scholar 

  15. Suman, Gupta V, Bagui A, Singh SP. Adv Funct Mater, 2017, 27: 1603820

    Article  Google Scholar 

  16. Zhang G, Yang G, Yan H, Kim JH, Ade H, Wu W, Xu X, Duan Y, Peng Q. Adv Mater, 2017, 29: 1606054

    Article  Google Scholar 

  17. Xu X, Bi Z, Ma W, Wang Z, Choy WCH, Wu W, Zhang G, Li Y, Peng Q. Adv Mater, 2017, 29: 1704271

    Article  Google Scholar 

  18. Xiao B, Tang A, Cheng L, Zhang J, Wei Z, Zeng Q, Zhou E. Sol RRL, 2017, 1: 1700166

    Article  Google Scholar 

  19. Holliday S, Ashraf RS, Nielsen CB, Kirkus M, Röhr JA, Tan CH, Collado-Fregoso E, Knall AC, Durrant JR, Nelson J, McCulloch I. J Am Chem Soc, 2015, 137: 898–904

    Article  CAS  Google Scholar 

  20. Wu Y, Bai H, Wang Z, Cheng P, Zhu S, Wang Y, Ma W, Zhan X. Energy Environ Sci, 2015, 8: 3215–3221

    Article  CAS  Google Scholar 

  21. Holliday S, Ashraf RS, Wadsworth A, Baran D, Yousaf SA, Nielsen CB, Tan CH, Dimitrov SD, Shang Z, Gasparini N, Alamoudi M, Laquai F, Brabec CJ, Salleo A, Durrant JR, McCulloch I. Nat Commun, 2016, 7: 11585

    Article  CAS  Google Scholar 

  22. Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I. Nat Mater, 2017, 16: 363–369

    Article  CAS  Google Scholar 

  23. Xiao B, Tang A, Zhang J, Mahmood A, Wei Z, Zhou E. Adv Energy Mater, 2017, 7: 1602269

    Article  Google Scholar 

  24. Xiao B, Tang A, Zhang Q, Li G, Wang X, Zhou E. ACS Appl Mater Interfaces, 2018, 10: 34427–34434

    Article  CAS  Google Scholar 

  25. Tang A, Xiao B, Chen F, Zhang J, Wei Z, Zhou E. Adv Energy Mater, 2018, 8: 1801582

    Article  Google Scholar 

  26. Tang A, Xiao B, Wang Y, Gao F, Tajima K, Bin H, Zhang ZG, Li Y, Wei Z, Zhou E. Adv Funct Mater, 2018, 28: 1704507

    Article  Google Scholar 

  27. Xiao B, Tang A, Yang J, Wei Z, Zhou E. ACS Macro Lett, 2017, 6: 410–414

    Article  CAS  Google Scholar 

  28. Xiao B, Tang A, Yang J, Mahmood A, Sun X, Zhou E. ACS Appl Mater Interfaces, 2018, 10: 10254–10261

    Article  CAS  Google Scholar 

  29. Xiao B, Zhang Q, Li G, Du M, Geng Y, Sun X, Tang A, Liu Y, Guo Q, Zhou E. Sci China Chem, 2020, 63: 254–264

    Article  CAS  Google Scholar 

  30. Li J, Li F, Zhang B, Zhou E. J Phys Chem C, 2020, 124: 9795–9801

    Article  CAS  Google Scholar 

  31. Tang A, Song W, Xiao B, Guo J, Min J, Ge Z, Zhang J, Wei Z, Zhou E. Chem Mater, 2019, 31: 3941–3947

    Article  CAS  Google Scholar 

  32. Li QY, Xiao J, Tang LM, Wang HC, Chen Z, Yang Z, Yip HL, Xu YX. Org Electron, 2017, 44: 217–224

    Article  CAS  Google Scholar 

  33. Chen Y, Jiang X, Chen X, Zhou J, Tang A, Geng Y, Guo Q, Zhou E. Macromolecules, 2019, 52: 8625–8630

    Article  CAS  Google Scholar 

  34. Wang X, Wang M. Polym Chem, 2014, 5: 5784–5792

    Article  CAS  Google Scholar 

  35. Wang X, Wang K, Wang M. Polym Chem, 2015, 6: 1846–1855

    Article  CAS  Google Scholar 

  36. Yao H, Cui Y, Qian D, Ponseca Jr. CS, Honarfar A, Xu Y, Xin J, Chen Z, Hong L, Gao B, Yu R, Zu Y, Ma W, Chabera P, Pullerits T, Yartsev A, Gao F, Hou J. J Am Chem Soc, 2019, 141: 7743–7750

    Article  CAS  Google Scholar 

  37. Rivnay J, Mannsfeld SCB, Miller CE, Salleo A, Toney MF. Chem Rev, 2012, 112: 5488–5519

    Article  CAS  Google Scholar 

  38. Fan Q, Su W, Meng X, Guo X, Li G, Ma W, Zhang M, Li Y. Sol RRL, 2017, 1: 1700020

    Article  Google Scholar 

  39. Xiao B, Geng Y, Tang A, Wang X, Chen Y, Zeng Q, Zhou E. Sol RRL, 2019, 3: 1800332

    Article  Google Scholar 

  40. Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51773046, 51673048, 21602040), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (QYZDBSSW-SLH033), and the National Key Research and Development Program of China (2017YFA0206600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erjun Zhou.

Supporting Information

11426_2020_9840_MOESM1_ESM.pdf

Tuning the intermolecular interaction of A2-A1-D-A1-A2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh VOC of ∼1.2 V

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Tang, A., Yang, J. et al. Tuning the intermolecular interaction of A2-A1-D-A1-A2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh VOC of ~1.2 V. Sci. China Chem. 63, 1666–1674 (2020). https://doi.org/10.1007/s11426-020-9840-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9840-x

Keywords

Navigation