Skip to main content
Log in

Recent advances in nickel-catalyzed reductive hydroalkylation and hydroarylation of electronically unbiased alkenes

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The use of simple and easily available feedstock to quickly and efficiently obtain compounds with complex molecular structures through the transition-metal-catalyzed construction of C(sp3)-C bonds has important significance. As traditional C(sp3)-C coupling reagents, alkylmetallic reagents often have limitations such as air and moisture sensitivity and difficulties in storage. Nickel-catalyzed reductive olefin hydrocarbonation reactions use alkenes to replace organometallic reagents, reduce the synthesis steps, improve the functional group compatibility, and expand the substrate scope This minireview discusses important progress in the hydroalkylation and hydroarylation of electronically unbiased alkenes in recent years and describes the key mechanism and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cherney AH, Kadunce NT, Reisman SE. Chem Rev, 2015, 115: 9587–9652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frisch AC, Beller M. Angew Chem Int Ed, 2005, 44: 674–688

    Article  CAS  Google Scholar 

  3. Jana R, Pathak TP, Sigman MS. Chem Rev, 2011, 111: 1417–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weix DJ. Acc Chem Res, 2015, 48: 1767–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang X, Dai Y, Gong H. Top Curr Chem (Z), 2016, 374: 43

    Article  CAS  Google Scholar 

  6. Tasker SZ, Standley EA, Jamison TF. Nature, 2014, 509: 299–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rudolph A, Lautens M. Angew Chem Int Ed, 2009, 48: 2656–2670

    Article  CAS  Google Scholar 

  8. Liu J, Lei C, Gong H. Sci China Chem, 2019, 62: 1492–1496

    Article  CAS  Google Scholar 

  9. Fu GC. ACS Cent Sci, 2017, 3: 692–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi J, Fu GC. Science, 2017, 356: eaaf7230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Iwasaki T, Kambe N. Top Curr Chem (Z), 2016, 374: 66

    Article  CAS  Google Scholar 

  12. Hu X. Chem Sci, 2011, 2: 1867–1886

    Article  CAS  Google Scholar 

  13. Yang KS, Gurak Jr. JA, Liu Z, Engle KM. J Am Chem Soc, 2016, 138: 14705–14712

    Article  CAS  PubMed  Google Scholar 

  14. Yan T, Guironnet D. Sci China Chem, 2020, 63: 755–757

    CAS  Google Scholar 

  15. Liu D, Liu B, Pan Z, Li J, Cui C. Sci China Chem, 2019, 62: 571–582

    Article  CAS  Google Scholar 

  16. Simonneau A, Oestreich M. Angew Chem Int Ed, 2015, 54: 3556–3558

    Article  CAS  Google Scholar 

  17. Hoffmann RW. Chem Soc Rev, 2016, 45: 577–583

    Article  CAS  PubMed  Google Scholar 

  18. Lo JC, Gui J, Yabe Y, Pan CM, Baran PS. Nature, 2014, 516: 343–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lo JC, Yabe Y, Baran PS. J Am Chem Soc, 2014, 136: 1304–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaspar B, Carreira EM. Angew Chem Int Ed, 2007, 46: 4519–4522

    Article  CAS  Google Scholar 

  21. Magnus P, Payne AH, Waring MJ, Scott DA, Lynch V. Tetrahedron Lett, 2000, 41: 9725–9730

    Article  CAS  Google Scholar 

  22. Leggans EK, Barker TJ, Duncan KK, Boger DL. Org Lett, 2012, 14: 1428–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gui J, Pan CM, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science, 2015, 348: 886–891

    Article  CAS  PubMed  Google Scholar 

  24. Gaspar B, Carreira EM. Angew Chem Int Ed, 2008, 47: 5758–5760

    Article  CAS  Google Scholar 

  25. Barker TJ, Boger DL. J Am Chem Soc, 2012, 134: 13588–13591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng LJ, Mankad NP. Chem Soc Rev, 2020, https://doi.org/10.1039/d0cs00316f

  27. Zhu S, Niljianskul N, Buchwald SL. J Am Chem Soc, 2013, 135: 15746–15749

    Article  CAS  PubMed  Google Scholar 

  28. Yang Y, Shi SL, Niu D, Liu P, Buchwald SL. Science, 2015, 349: 62–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang YM, Bruno NC, Placeres ÁL, Zhu S, Buchwald SL. J Am Chem Soc, 2015, 137: 10524–10527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xi Y, Butcher TW, Zhang J, Hartwig JF. Angew Chem Int Ed, 2016, 55: 776–780

    Article  CAS  Google Scholar 

  31. Nishikawa D, Hirano K, Miura M. J Am Chem Soc, 2015, 137: 15620–15623

    Article  CAS  PubMed  Google Scholar 

  32. You Y’, Pham QV, Ge S. CCS Chem, 2019, 1: 455–463

    Article  CAS  Google Scholar 

  33. Sakae R, Hirano K, Miura M. J Am Chem Soc, 2015, 137: 6460–6463

    Article  CAS  PubMed  Google Scholar 

  34. Su W, Gong TJ, Lu X, Xu MY, Yu CG, Xu ZY, Yu HZ, Xiao B, Fu Y. Angew Chem Int Ed, 2015, 54: 12957–12961

    Article  CAS  Google Scholar 

  35. Geist E, Kirschning A, Schmidt T. Nat Prod Rep, 2014, 31: 441–448

    Article  CAS  PubMed  Google Scholar 

  36. Lu X, Xiao B, Zhang Z, Gong T, Su W, Yi J, Fu Y, Liu L. Nat Commun, 2016, 7: 11129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent Sci, 2018, 4: 153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Janssen-Müller D, Sahoo B, Sun SZ, Martin R. Isr J Chem, 2019, 60: 195–206

    Article  CAS  Google Scholar 

  39. Li Y, Wu D, Cheng H, Yin G. Angew Chem Int Ed, 2020, 59: 7990–8003

    Article  CAS  Google Scholar 

  40. Zhang G, Liu Y, Zhao J, Li Y, Zhang Q. Sci China Chem, 2019, 62: 1476–1491

    Article  CAS  Google Scholar 

  41. Zhou F, Zhu J, Zhang Y, Zhu S. Angew Chem Int Ed, 2018, 57: 4058–4062

    Article  CAS  Google Scholar 

  42. Wang ZY, Wan JH, Wang GY, Wang R, Jin RX, Lan Q, Wang XS. Tetrahedron Lett, 2018, 59: 2302–2305

    Article  CAS  Google Scholar 

  43. Chen W, Zhen X, Wu W, Jiang X. Sci China Chem, 2020, 63: 648–664

    Article  CAS  Google Scholar 

  44. Schmidt J, Choi J, Liu AT, Slusarczyk M, Fu GC. Science, 2016, 354: 1265–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sandford C, Aggarwal VK. Chem Commun, 2017, 53: 5481–5494

    Article  CAS  Google Scholar 

  46. Molander GA. J Org Chem, 2015, 80: 7837–7848

    Article  CAS  PubMed  Google Scholar 

  47. Collins BSL, Wilson CM, Myers EL, Aggarwal VK. Angew Chem Int Ed, 2017, 56: 11700–11733

    Article  CAS  Google Scholar 

  48. Zhang L, Lovinger GJ, Edelstein EK, Szymaniak AA, Chierchia MP, Morken JP. Science, 2016, 351: 70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kuang Z, Gao G, Song Q. Sci China Chem, 2019, 62: 62–66

    Article  CAS  Google Scholar 

  50. Peng S, Yang J, Liu G, Huang Z. Sci China Chem, 2019, 62: 336–340

    Article  CAS  Google Scholar 

  51. Sun SZ, Börjesson M, Martin-Montero R, Martin R. J Am Chem Soc, 2018, 140: 12765–12769

    Article  CAS  PubMed  Google Scholar 

  52. Suravarapu SR, Peter B, Renaud P. Sci China Chem, 2019, 62: 1504–1506

    Article  CAS  Google Scholar 

  53. Blum A, Diederich W. Curr Org Synth, 2009, 6: 38–53

    Article  CAS  Google Scholar 

  54. Qian D, Hu X. Angew Chem Int Ed, 2019, 58: 18519–18523

    Article  CAS  Google Scholar 

  55. Zhang HH, Chen H, Zhu C, Yu S. Sci China Chem, 2020, 63: 637–647

    Article  CAS  Google Scholar 

  56. Wang Z, Yin H, Fu GC. Nature, 2018, 563: 379–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schley ND, Fu GC. J Am Chem Soc, 2014, 136: 16588–16593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou F, Zhang Y, Xu X, Zhu S. Angew Chem Int Ed, 2019, 58: 1754–1758

    Article  CAS  Google Scholar 

  59. Schwarzwalder GM, Matier CD, Fu GC. Angew Chem Int Ed, 2019, 58: 3571–3574

    Article  CAS  Google Scholar 

  60. Huang W, Wan X, Shen Q. Angew Chem Int Ed, 2017, 56: 11986–11989

    Article  CAS  Google Scholar 

  61. Cordier CJ, Lundgren RJ, Fu GC. J Am Chem Soc, 2013, 135: 10946–10949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DWC. J Am Chem Soc, 2016, 138: 1832–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Varenikov A, Gandelman M. J Am Chem Soc, 2019, 141: 10994–10999

    Article  CAS  PubMed  Google Scholar 

  64. He SJ, Wang JW, Li Y, Xu ZY, Wang XX, Lu X, Fu Y. J Am Chem Soc, 2020, 142: 214–221

    Article  CAS  PubMed  Google Scholar 

  65. Yang ZP, Fu GC. J Am Chem Soc, 2020, 142: 5870–5875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen Z, Lu F, Yuan F, Sun J, Du L, Li Z, Gao M, Shi R, Lei A. Sci China Chem, 2019, 62: 1497–1500

    Article  CAS  Google Scholar 

  67. Xuan J, Zhang ZG, Xiao WJ. Angew Chem Int Ed, 2015, 54: 15632–15641

    Article  CAS  Google Scholar 

  68. Shang R, Liu L. Sci China Chem, 2011, 54: 1670–1687

    Article  CAS  Google Scholar 

  69. Fu MC, Shang R, Zhao B, Wang B, Fu Y. Science, 2019, 363: 1429–1434

    Article  CAS  PubMed  Google Scholar 

  70. Lu X, Xiao B, Liu L, Fu Y. Chem Eur J, 2016, 22: 11161–11164

    Article  CAS  PubMed  Google Scholar 

  71. Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan CM, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J Am Chem Soc, 2016, 138: 2174–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science, 2016, 352: 801–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huihui KMM, Caputo JA, Melchor Z, Olivares AM, Spiewak AM, Johnson KA, DiBenedetto TA, Kim S, Ackerman LKG, Weix DJ. J Am Chem Soc, 2016, 138: 5016–5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhao C, Jia X, Wang X, Gong H. J Am Chem Soc, 2014, 136: 17645–17651

    Article  CAS  PubMed  Google Scholar 

  75. Basch CH, Liao J, Xu J, Piane JJ, Watson MP. J Am Chem Soc, 2017, 139: 5313–5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Plunkett S, Basch CH, Santana SO, Watson MP. J Am Chem Soc, 2019, 141: 2257–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ni S, Li CX, Mao Y, Han J, Wang Y, Yan H, Pan Y. Sci Adv, 2019, 5: eaaw9516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun SZ, Romano C, Martin R. J Am Chem Soc, 2019, 141: 16197–16201

    Article  CAS  PubMed  Google Scholar 

  79. Green SA, Crossley SWM, Matos JLM, Vásquez-Céspedes S, Shevick SL, Shenvi RA. Acc Chem Res, 2018, 51: 2628–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Crossley SWM, Obradors C, Martinez RM, Shenvi RA. Chem Rev, 2016, 116: 8912–9000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Green SA, Huffman TR, McCourt RO, van der Puyl V, Shenvi RA. J Am Chem Soc, 2019, 141: 7709–7714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang YX, Ye M. Sci China Chem, 2018, 61: 1004–1013

    Article  CAS  Google Scholar 

  83. Nakao Y, Yamada Y, Kashihara N, Hiyama T. J Am Chem Soc, 2010, 132: 13666–13668

    Article  CAS  PubMed  Google Scholar 

  84. Bair JS, Schramm Y, Sergeev AG, Clot E, Eisenstein O, Hartwig JF. J Am Chem Soc, 2014, 136: 13098–13101

    Article  CAS  PubMed  Google Scholar 

  85. Wang YX, Qi SL, Luan YX, Han XW, Wang S, Chen H, Ye M. J Am Chem Soc, 2018, 140: 5360–5364

    Article  CAS  PubMed  Google Scholar 

  86. Nguyen J, Chong A, Lalic G. Chem Sci, 2019, 10: 3231–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Messaoudi S, Hamze A, Provot O, Tréguier B, Rodrigo De Losada J, Bignon J, Liu JM, Wdzieczak-Bakala J, Thoret S, Dubois J, Brion JD, Alami M. ChemMedChem, 2011, 6: 488–497

    Article  CAS  PubMed  Google Scholar 

  88. Do HQ, Chandrashekar ERR, Fu GC. J Am Chem Soc, 2013, 135: 16288–16291

    Article  CAS  PubMed  Google Scholar 

  89. He Y, Cai Y, Zhu S. J Am Chem Soc, 2017, 139: 1061–1064

    Article  CAS  PubMed  Google Scholar 

  90. Chen F, Chen K, Zhang Y, He Y, Wang YM, Zhu S. J Am Chem Soc, 2017, 139: 13929–13935

    Article  CAS  PubMed  Google Scholar 

  91. Peng L, Li Y, Li Y, Wang W, Pang H, Yin G. ACS Catal, 2018, 8: 310–313

    Article  CAS  Google Scholar 

  92. Peng L, Li Z, Yin G. Org Lett, 2018, 20: 1880–1883

    Article  CAS  PubMed  Google Scholar 

  93. Jiao K, Liu D, Ma H, Qiu H, Fang P, Mei T. Angew Chem Int Ed, 2020, 59: 6520–6524

    Article  CAS  Google Scholar 

  94. Kumar GS, Peshkov A, Brzozowska A, Nikolaienko P, Zhu C, Rueping M. Angew Chem Int Ed, 2020, 59: 6513–6519

    Article  CAS  Google Scholar 

  95. Zhang Y, Han B, Zhu S. Angew Chem Int Ed, 2019, 58: 13860–13864

    Article  CAS  Google Scholar 

  96. Bera S, Hu X. Angew Chem Int Ed, 2019, 58: 13854–13859

    Article  CAS  Google Scholar 

  97. Green SA, Matos JLM, Yagi A, Shenvi RA. J Am Chem Soc, 2016, 138: 12779–12782

    Article  CAS  PubMed  Google Scholar 

  98. Shevick SL, Obradors C, Shenvi RA. J Am Chem Soc, 2018, 140: 12056–12068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Green SA, Vásquez-Céspedes S, Shenvi RA. J Am Chem Soc, 2018, 140: 11317–11324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Biswas S, Weix DJ. J Am Chem Soc, 2013, 135: 16192–16197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. J Am Chem Soc, 2015, 137: 4896–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu L, Yang G, Zhang W. CCS Chem, 2019, 623–631

  103. Lv XY, Fan C, Xiao LJ, Xie JH, Zhou QL. CCS Chem, 2019, 1: 328–334

    Article  CAS  Google Scholar 

  104. Wang Z, Bai X, Li B. Chin J Chem, 2019, 37: 1174–1180

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21732006, 21702200, 51821006, 51961135104) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Lu or Yao Fu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XX., Lu, X., Li, Y. et al. Recent advances in nickel-catalyzed reductive hydroalkylation and hydroarylation of electronically unbiased alkenes. Sci. China Chem. 63, 1586–1600 (2020). https://doi.org/10.1007/s11426-020-9838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9838-x

Navigation