Abstract
The use of simple and easily available feedstock to quickly and efficiently obtain compounds with complex molecular structures through the transition-metal-catalyzed construction of C(sp3)-C bonds has important significance. As traditional C(sp3)-C coupling reagents, alkylmetallic reagents often have limitations such as air and moisture sensitivity and difficulties in storage. Nickel-catalyzed reductive olefin hydrocarbonation reactions use alkenes to replace organometallic reagents, reduce the synthesis steps, improve the functional group compatibility, and expand the substrate scope This minireview discusses important progress in the hydroalkylation and hydroarylation of electronically unbiased alkenes in recent years and describes the key mechanism and applications.
Similar content being viewed by others
References
Cherney AH, Kadunce NT, Reisman SE. Chem Rev, 2015, 115: 9587–9652
Frisch AC, Beller M. Angew Chem Int Ed, 2005, 44: 674–688
Jana R, Pathak TP, Sigman MS. Chem Rev, 2011, 111: 1417–1492
Weix DJ. Acc Chem Res, 2015, 48: 1767–1775
Wang X, Dai Y, Gong H. Top Curr Chem (Z), 2016, 374: 43
Tasker SZ, Standley EA, Jamison TF. Nature, 2014, 509: 299–309
Rudolph A, Lautens M. Angew Chem Int Ed, 2009, 48: 2656–2670
Liu J, Lei C, Gong H. Sci China Chem, 2019, 62: 1492–1496
Fu GC. ACS Cent Sci, 2017, 3: 692–700
Choi J, Fu GC. Science, 2017, 356: eaaf7230
Iwasaki T, Kambe N. Top Curr Chem (Z), 2016, 374: 66
Hu X. Chem Sci, 2011, 2: 1867–1886
Yang KS, Gurak Jr. JA, Liu Z, Engle KM. J Am Chem Soc, 2016, 138: 14705–14712
Yan T, Guironnet D. Sci China Chem, 2020, 63: 755–757
Liu D, Liu B, Pan Z, Li J, Cui C. Sci China Chem, 2019, 62: 571–582
Simonneau A, Oestreich M. Angew Chem Int Ed, 2015, 54: 3556–3558
Hoffmann RW. Chem Soc Rev, 2016, 45: 577–583
Lo JC, Gui J, Yabe Y, Pan CM, Baran PS. Nature, 2014, 516: 343–348
Lo JC, Yabe Y, Baran PS. J Am Chem Soc, 2014, 136: 1304–1307
Gaspar B, Carreira EM. Angew Chem Int Ed, 2007, 46: 4519–4522
Magnus P, Payne AH, Waring MJ, Scott DA, Lynch V. Tetrahedron Lett, 2000, 41: 9725–9730
Leggans EK, Barker TJ, Duncan KK, Boger DL. Org Lett, 2012, 14: 1428–1431
Gui J, Pan CM, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science, 2015, 348: 886–891
Gaspar B, Carreira EM. Angew Chem Int Ed, 2008, 47: 5758–5760
Barker TJ, Boger DL. J Am Chem Soc, 2012, 134: 13588–13591
Cheng LJ, Mankad NP. Chem Soc Rev, 2020, https://doi.org/10.1039/d0cs00316f
Zhu S, Niljianskul N, Buchwald SL. J Am Chem Soc, 2013, 135: 15746–15749
Yang Y, Shi SL, Niu D, Liu P, Buchwald SL. Science, 2015, 349: 62–66
Wang YM, Bruno NC, Placeres ÁL, Zhu S, Buchwald SL. J Am Chem Soc, 2015, 137: 10524–10527
Xi Y, Butcher TW, Zhang J, Hartwig JF. Angew Chem Int Ed, 2016, 55: 776–780
Nishikawa D, Hirano K, Miura M. J Am Chem Soc, 2015, 137: 15620–15623
You Y’, Pham QV, Ge S. CCS Chem, 2019, 1: 455–463
Sakae R, Hirano K, Miura M. J Am Chem Soc, 2015, 137: 6460–6463
Su W, Gong TJ, Lu X, Xu MY, Yu CG, Xu ZY, Yu HZ, Xiao B, Fu Y. Angew Chem Int Ed, 2015, 54: 12957–12961
Geist E, Kirschning A, Schmidt T. Nat Prod Rep, 2014, 31: 441–448
Lu X, Xiao B, Zhang Z, Gong T, Su W, Yi J, Fu Y, Liu L. Nat Commun, 2016, 7: 11129
Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent Sci, 2018, 4: 153–165
Janssen-Müller D, Sahoo B, Sun SZ, Martin R. Isr J Chem, 2019, 60: 195–206
Li Y, Wu D, Cheng H, Yin G. Angew Chem Int Ed, 2020, 59: 7990–8003
Zhang G, Liu Y, Zhao J, Li Y, Zhang Q. Sci China Chem, 2019, 62: 1476–1491
Zhou F, Zhu J, Zhang Y, Zhu S. Angew Chem Int Ed, 2018, 57: 4058–4062
Wang ZY, Wan JH, Wang GY, Wang R, Jin RX, Lan Q, Wang XS. Tetrahedron Lett, 2018, 59: 2302–2305
Chen W, Zhen X, Wu W, Jiang X. Sci China Chem, 2020, 63: 648–664
Schmidt J, Choi J, Liu AT, Slusarczyk M, Fu GC. Science, 2016, 354: 1265–1269
Sandford C, Aggarwal VK. Chem Commun, 2017, 53: 5481–5494
Molander GA. J Org Chem, 2015, 80: 7837–7848
Collins BSL, Wilson CM, Myers EL, Aggarwal VK. Angew Chem Int Ed, 2017, 56: 11700–11733
Zhang L, Lovinger GJ, Edelstein EK, Szymaniak AA, Chierchia MP, Morken JP. Science, 2016, 351: 70–74
Kuang Z, Gao G, Song Q. Sci China Chem, 2019, 62: 62–66
Peng S, Yang J, Liu G, Huang Z. Sci China Chem, 2019, 62: 336–340
Sun SZ, Börjesson M, Martin-Montero R, Martin R. J Am Chem Soc, 2018, 140: 12765–12769
Suravarapu SR, Peter B, Renaud P. Sci China Chem, 2019, 62: 1504–1506
Blum A, Diederich W. Curr Org Synth, 2009, 6: 38–53
Qian D, Hu X. Angew Chem Int Ed, 2019, 58: 18519–18523
Zhang HH, Chen H, Zhu C, Yu S. Sci China Chem, 2020, 63: 637–647
Wang Z, Yin H, Fu GC. Nature, 2018, 563: 379–383
Schley ND, Fu GC. J Am Chem Soc, 2014, 136: 16588–16593
Zhou F, Zhang Y, Xu X, Zhu S. Angew Chem Int Ed, 2019, 58: 1754–1758
Schwarzwalder GM, Matier CD, Fu GC. Angew Chem Int Ed, 2019, 58: 3571–3574
Huang W, Wan X, Shen Q. Angew Chem Int Ed, 2017, 56: 11986–11989
Cordier CJ, Lundgren RJ, Fu GC. J Am Chem Soc, 2013, 135: 10946–10949
Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DWC. J Am Chem Soc, 2016, 138: 1832–1835
Varenikov A, Gandelman M. J Am Chem Soc, 2019, 141: 10994–10999
He SJ, Wang JW, Li Y, Xu ZY, Wang XX, Lu X, Fu Y. J Am Chem Soc, 2020, 142: 214–221
Yang ZP, Fu GC. J Am Chem Soc, 2020, 142: 5870–5875
Chen Z, Lu F, Yuan F, Sun J, Du L, Li Z, Gao M, Shi R, Lei A. Sci China Chem, 2019, 62: 1497–1500
Xuan J, Zhang ZG, Xiao WJ. Angew Chem Int Ed, 2015, 54: 15632–15641
Shang R, Liu L. Sci China Chem, 2011, 54: 1670–1687
Fu MC, Shang R, Zhao B, Wang B, Fu Y. Science, 2019, 363: 1429–1434
Lu X, Xiao B, Liu L, Fu Y. Chem Eur J, 2016, 22: 11161–11164
Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan CM, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J Am Chem Soc, 2016, 138: 2174–2177
Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science, 2016, 352: 801–805
Huihui KMM, Caputo JA, Melchor Z, Olivares AM, Spiewak AM, Johnson KA, DiBenedetto TA, Kim S, Ackerman LKG, Weix DJ. J Am Chem Soc, 2016, 138: 5016–5019
Zhao C, Jia X, Wang X, Gong H. J Am Chem Soc, 2014, 136: 17645–17651
Basch CH, Liao J, Xu J, Piane JJ, Watson MP. J Am Chem Soc, 2017, 139: 5313–5316
Plunkett S, Basch CH, Santana SO, Watson MP. J Am Chem Soc, 2019, 141: 2257–2262
Ni S, Li CX, Mao Y, Han J, Wang Y, Yan H, Pan Y. Sci Adv, 2019, 5: eaaw9516
Sun SZ, Romano C, Martin R. J Am Chem Soc, 2019, 141: 16197–16201
Green SA, Crossley SWM, Matos JLM, Vásquez-Céspedes S, Shevick SL, Shenvi RA. Acc Chem Res, 2018, 51: 2628–2640
Crossley SWM, Obradors C, Martinez RM, Shenvi RA. Chem Rev, 2016, 116: 8912–9000
Green SA, Huffman TR, McCourt RO, van der Puyl V, Shenvi RA. J Am Chem Soc, 2019, 141: 7709–7714
Wang YX, Ye M. Sci China Chem, 2018, 61: 1004–1013
Nakao Y, Yamada Y, Kashihara N, Hiyama T. J Am Chem Soc, 2010, 132: 13666–13668
Bair JS, Schramm Y, Sergeev AG, Clot E, Eisenstein O, Hartwig JF. J Am Chem Soc, 2014, 136: 13098–13101
Wang YX, Qi SL, Luan YX, Han XW, Wang S, Chen H, Ye M. J Am Chem Soc, 2018, 140: 5360–5364
Nguyen J, Chong A, Lalic G. Chem Sci, 2019, 10: 3231–3236
Messaoudi S, Hamze A, Provot O, Tréguier B, Rodrigo De Losada J, Bignon J, Liu JM, Wdzieczak-Bakala J, Thoret S, Dubois J, Brion JD, Alami M. ChemMedChem, 2011, 6: 488–497
Do HQ, Chandrashekar ERR, Fu GC. J Am Chem Soc, 2013, 135: 16288–16291
He Y, Cai Y, Zhu S. J Am Chem Soc, 2017, 139: 1061–1064
Chen F, Chen K, Zhang Y, He Y, Wang YM, Zhu S. J Am Chem Soc, 2017, 139: 13929–13935
Peng L, Li Y, Li Y, Wang W, Pang H, Yin G. ACS Catal, 2018, 8: 310–313
Peng L, Li Z, Yin G. Org Lett, 2018, 20: 1880–1883
Jiao K, Liu D, Ma H, Qiu H, Fang P, Mei T. Angew Chem Int Ed, 2020, 59: 6520–6524
Kumar GS, Peshkov A, Brzozowska A, Nikolaienko P, Zhu C, Rueping M. Angew Chem Int Ed, 2020, 59: 6513–6519
Zhang Y, Han B, Zhu S. Angew Chem Int Ed, 2019, 58: 13860–13864
Bera S, Hu X. Angew Chem Int Ed, 2019, 58: 13854–13859
Green SA, Matos JLM, Yagi A, Shenvi RA. J Am Chem Soc, 2016, 138: 12779–12782
Shevick SL, Obradors C, Shenvi RA. J Am Chem Soc, 2018, 140: 12056–12068
Green SA, Vásquez-Céspedes S, Shenvi RA. J Am Chem Soc, 2018, 140: 11317–11324
Biswas S, Weix DJ. J Am Chem Soc, 2013, 135: 16192–16197
Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. J Am Chem Soc, 2015, 137: 4896–4899
Wu L, Yang G, Zhang W. CCS Chem, 2019, 623–631
Lv XY, Fan C, Xiao LJ, Xie JH, Zhou QL. CCS Chem, 2019, 1: 328–334
Wang Z, Bai X, Li B. Chin J Chem, 2019, 37: 1174–1180
Acknowledgements
This work was supported by the National Natural Science Foundation of China (21732006, 21702200, 51821006, 51961135104) and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Conflict of interest
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Wang, XX., Lu, X., Li, Y. et al. Recent advances in nickel-catalyzed reductive hydroalkylation and hydroarylation of electronically unbiased alkenes. Sci. China Chem. 63, 1586–1600 (2020). https://doi.org/10.1007/s11426-020-9838-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11426-020-9838-x